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A scoto-seesaw model with flavor symmetry
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We analyze a hybrid scoto-seesaw model based on the 𝐴4 discrete symmetry to understand neutrino
masses and mixing. The minimal type-I seesaw generates tribimaximal neutrino mixing at the
leading order. The scotogenic contribution deviates from this first-order approximation of the
lepton mixing matrix to yield the observed non-zero 𝜃13 and to accommodate a potential dark
matter candidate.
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1. Introduction

In a scoto-seesaw framework [1, 2], it was shown that the minimal seesaw contribution can
reproduce the tribimaximal (TBM) neutrino mixing with 𝐴4 discrete flavor symmetry. Subsequently,
a scotogenic contribution provides adequate deviation from TBM mixing, establishing a common
origin of the nonzero 𝜃13 and cosmological dark matter. Inclusion of the scotogenic contribution to
the neutrino mass helps in reproducing the trimaximal (TM2) mixing and generating the observed
value of the reactor mixing angle 𝜃13. It also naturally incorporates dark matter candidates (three
potential dark matter candidates, such as the dark fermion and real and imaginary components
of the scalar field involved in the scotogenic contribution) into the picture. The model predicts
the atmospheric mixing angle, Dirac and Majorana CP phases, and the effective mass parameter
appearing in the neutrinoless double beta decay.

2. Structure of the model

Here we work in a hybrid scoto-seesaw framework [1, 2] with usual scotogenic fermion 𝑓 and
scalar doublet 𝜂, supported additionally by the 𝐴4 discrete flavor symmetry and two right-handed
neutrinos 𝑁𝑅1,2 . To obtain the flavor structure of the Yukawa couplings the flavons 𝜙𝑠, 𝜙𝑎, 𝜙𝑇 , 𝜉 are
introduced. The inclusion of flavon fields (SM gauge singlets) is a characteristic feature of models
with discrete flavor symmetries [3–9]. Interestingly, the model contains an intrinsic Z2 symmetry
under which both 𝑓 and 𝜂 are odd. The stability of the dark matter is ensured by this Z2 symmetry.
In Table 1, we present transformation properties of all the fields content of our model under the
complete discrete flavor symmetry. With fields content in Table 1, the charged lepton mass matrix

Fields 𝑒𝑅, 𝜇𝑅, 𝜏𝑅 𝐿𝛼 𝐻 𝑁𝑅1 𝑁𝑅2 𝑓 𝜂 𝜙𝑠 𝜙𝑎 𝜙𝑇 𝜉

𝐴4 1 , 1′′ , 1′ 3 1 1 1 1 1 3 3 3 1′′

𝑍4 −𝑖 −𝑖 1 −1 1 1 1 𝑖 −𝑖 1 −1
𝑍3 𝜔 𝜔 𝜔2 1 1 1 𝜔2 1 1 𝜔 1
𝑍2 −1 1 1 1 −1 −1 1 1 −1 −1 −1

Table 1: Field contents and transformation under the symmetries of our model.

is found to be diagonal. The Lagrangian that generates neutrino mass at a tree level by the type-I
seesaw mechanism is given by

L𝑁 =
𝑦𝑁1

Λ
( �̄�𝜙𝑠)�̃�𝑁𝑅1 +

𝑦𝑁2

Λ
( �̄�𝜙𝑎)�̃�𝑁𝑅2 +

1
2
𝑀𝑁1 �̄�

𝑐
𝑅1
𝑁𝑅1 +

1
2
𝑀𝑁2 �̄�

𝑐
𝑅2
𝑁𝑅2 + ℎ.𝑐., (1)

where 𝑦𝑁1,2 are the corresponding couplings and 𝑀𝑁1,2 are the Majorana masses of right-handed
neutrinos. To get the flavor structure, we assume that the flavon fields get VEVs along ⟨𝜙𝑠⟩ =

(0, 𝑣𝑠,−𝑣𝑠), ⟨𝜙𝑎⟩ = (𝑣𝑎, 𝑣𝑎, 𝑣𝑎) [10]. With these flavon VEVs, the Dirac and Majorana mass
matrices are found to be

𝑀𝐷 =
𝑣

Λ

©«
0 𝑦𝑁2𝑣𝑎

−𝑦𝑁1𝑣𝑠 𝑦𝑁2𝑣𝑎

𝑦𝑁1𝑣𝑠 𝑦𝑁2𝑣𝑎

ª®®¬ = 𝑣𝑌𝑁 , 𝑀𝑅 =

(
𝑀𝑁1 0

0 𝑀𝑁2

)
. (2)
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Now using the type-I seesaw formula the light neutrino mass matrix at the leading order can be
written as

(𝑀𝜈)TREE = −
©«
𝐵 𝐵 𝐵

𝐵 𝐴 + 𝐵 −𝐴 + 𝐵

𝐵 −𝐴 + 𝐵 𝐴 + 𝐵

ª®®¬ , 𝐴 =
𝑣2𝑣2

𝑠𝑦
2
𝑁1

Λ2𝑀𝑁1

, 𝐵 =
𝑣2𝑣2

𝑎𝑦
2
𝑁2

Λ2𝑀𝑁2

, (3)

which can be diagonalized by TBM mixing matrix [11]. The scotogenic contribution in our model
with the fermion 𝑓 and scalar field 𝜂 can be written as

L𝑆 =
𝑦𝑠

Λ2 ( �̄�𝜙𝑠)𝜉𝑖𝜎2𝜂
∗ 𝑓 + 1

2
𝑀 𝑓 𝑓

𝑐 𝑓 + ℎ.𝑐., (4)

where 𝑦𝑠 is the coupling and 𝑀 𝑓 is the mass of 𝑓 . The VEV of 𝜙𝑠 and the non-trivial 𝐴4 singlet
𝜉 (which provides appropriate 𝐴4 contraction) crucially dictate the structure of the scotogenic
contribution and help in breaking the TBM mixing [12–16]. Therefore the contribution in the
effective neutrino mass matrix originated from the scotogenic radiative corrections is given by [2,
17, 18]

(𝑀𝜈)LOOP = F (𝑚𝜂𝑅
, 𝑚𝜂𝐼

, 𝑀 𝑓 )𝑀 𝑓𝑌
𝑖
𝑓𝑌

𝑗

𝑓
, where (5)

F (𝑚𝜂𝑅
, 𝑚𝜂𝐼

, 𝑀 𝑓 ) =
1

32𝜋2

[𝑚2
𝜂𝑅

log
(
𝑀2

𝑓
/𝑚2

𝜂𝑅

)
𝑀2

𝑓
− 𝑚2

𝜂𝑅

−
𝑚2

𝜂𝐼
log

(
𝑀2

𝑓
/𝑚2

𝜂𝐼

)
𝑀2

𝑓
− 𝑚2

𝜂𝐼

]
, (6)

where 𝑚𝜂𝑅
and 𝑚𝜂𝐼

are the masses of the neutral component of 𝜂. Once the flavons 𝜙𝑠 and 𝜉 acquire
VEVs in the direction ⟨𝜙𝑠⟩ = (0, 𝑣𝑠,−𝑣𝑠) and ⟨𝜉⟩ = 𝑣 𝜉 respectively, the associated couplings can
be written as𝑌𝐹 = (𝑌 𝑒

𝐹
, 𝑌

𝜇

𝐹
, 𝑌 𝜏

𝐹
)𝑇 = (𝑦𝑠 𝑣𝑠Λ

𝑣𝜉

Λ
, 0,−𝑦𝑠 𝑣𝑠Λ

𝑣𝜉

Λ
)𝑇 . Finally, combining both contributions,

the effective light neutrino mass matrix and the corresponding diagonalization matrix reads

𝑀𝜈 = (𝑀𝜈)TREE + (𝑀𝜈)LOOP

=
©«
−𝐵 + 𝐶 −𝐵 −𝐵 − 𝐶

−𝐵 −(𝐴 + 𝐵) 𝐴 − 𝐵

−𝐵 − 𝐶 𝐴 − 𝐵 −𝐴 − 𝐵 + 𝐶

ª®®¬ ;𝑈𝜈 =

©«
√︃

2
3 cos 𝜃 1√

3

√︃
2
3 𝑒

𝑖𝜙 sin 𝜃
− cos 𝜃√

6
+ 𝑒𝑖𝜙 sin 𝜃

√
2

1√
3

− cos 𝜃√
2

− 𝑒𝑖𝜙 sin 𝜃
√

6
− cos 𝜃√

6
− 𝑒𝑖𝜙 sin 𝜃

√
2

1√
3

cos 𝜃√
2

− 𝑒𝑖𝜙 sin 𝜃
√

6

ª®®®¬𝑈𝑚, (7)

where 𝑈𝑚 = diag(1, 𝑒𝑖𝛼21/2, 𝑒𝑖𝛼31/2) is the Majorana phase matrix. Without loss of generality we
can write 𝐴 = |𝐴|𝑒𝑖𝜙𝐴, 𝐵 = |𝐵|𝑒𝑖𝜙𝐵 , 𝐶 = |𝐶 |𝑒𝑖𝜙𝐶 . Now, let us define 𝛼 = |𝐴|/|𝐶 | and 𝛽 = |𝐵|/|𝐶 |,
and phase differences 𝜙𝐴𝐶 = 𝜙𝐴 − 𝜙𝐶 and 𝜙𝐵𝐶 = 𝜙𝐵 − 𝜙𝐶 . Hence 𝜃 and 𝜙 can be expressed in
terms of model parameters as

tan 𝜙 =
𝛼 sin 𝜙𝐴𝐶

1 − 𝛼 cos 𝜙𝐴𝐶

, tan 2𝜃 =

√
3

cos 𝜙 + 2𝛼 cos(𝜙𝐴𝐶 + 𝜙) . (8)

Further comparing 𝑈𝜈 as given in Eq. (7) with 𝑈𝑃𝑀𝑁𝑆 , we find the following relations for mixing
angles and 𝛿CP as a function of 𝜃 and 𝜙 as [12]

sin 𝜃13𝑒
−𝑖 𝛿CP =

√︂
2
3
𝑒−𝑖𝜙 sin 𝜃; tan2 𝜃23 =

(
1 + sin 𝜃13 cos 𝜙√

2−3 sin2 𝜃13

)2
+ sin2 𝜃13 sin2 𝜙

(2−3 sin2 𝜃13 )(
1 − sin 𝜃13 cos 𝜙√

2−3 sin2 𝜃13

)2
+ sin2 𝜃13 sin2 𝜙

(2−3 sin2 𝜃13 )

. (9)
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Figure 1: The allowed ranges for 𝛼 and 𝜙𝐴𝐶 for both normal (left panel) and inverted (right panel) hierarchy
of neutrino masses.

Similar to the mixing angles, following the analysis given in [1], we find that the light neutrino
masses also depend on the parameters 𝛼, 𝛽, 𝜙𝐴𝐶 , 𝜙𝐵𝐶 . Therefore using the 3𝜎 range neutrino
oscillation data [19] on 𝜃12,13,23, Δ𝑚2

21,31 we can constrain the above parameters. In Fig. 1 we
have plotted the allowed region in the 𝛼 − 𝜙𝐴𝐶 plane for NH (left panel) and IH (right panel),
respectively. Using these constraints on the model parameters, we can further predict 𝛿CP,

∑
𝑚𝑖

and 𝑚𝛽𝛽 as given in Fig. 2. For discussion of various other phenomenological aspects of the flavor

Figure 2: Predictive correlations for sin2 𝜃23 − 𝛿𝐶𝑃 ,
∑
𝑚𝑖 − 𝑚1 and 𝑚𝛽𝛽 − 𝑚1 for NH.

symmetric scoto-seesaw model, including LFV decays, see [1].

3. Conclusion

In this work, we have formulated an 𝐴4 flavor symmetric hybrid scoto-seesaw framework to
explain neutrino mixing, where both type-I seesaw and scotogenic mechanisms contribute to the
effective light neutrino mass. The scotogenic contribution is a common origin of 𝜃13 and dark
matter. The model is very predictive in nature and exhibits a wide range of predictions. We
obtain a lower limit on the lightest neutrino mass as 𝑚lightest ≥ 0.0012 eV for normal hierarchy
and 𝑚lightest ≥ 0.014 eV for inverted hierarchy. We have also estimated the prediction for 𝑚𝛽𝛽 and
found it to be in the range 1− 30 meV for normal hierarchy and 16− 60 meV for inverted hierarchy,
respectively. These values are within reach of future neutrinoless double beta decay experiments.
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