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Black holes and nilmanifolds: quasinormal modes as the
fingerprints of extra dimensions?
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Quasinormal modes (QNMs), the damped oscillations in spacetime that emanate from a perturbed
body as it returns to an equilibrium state, have served for several decades as a theoretical means of
studying 𝑛-dimensional black hole spacetimes. These black hole QNMs can in turn be exploited to
explore beyond the Standard Model (BSM) scenarios and quantum gravity conjectures. With the
establishment of the LIGO-Virgo-KAGRA network of gravitational-wave (GW) detectors, there
now exists the possibility of comparing computed QNMs against GW data from compact binary
coalescences. Encouraged by this development, we investigate whether QNMs can be used in
the search for signatures of extra dimensions. To address a gap in the BSM literature, we focus
here on higher dimensions characterised by negative Ricci curvature. As a first step, we consider
a product space comprised of a 4D Schwarzschild black hole spacetime and a 3D nilmanifold
(twisted torus); we model the black hole perturbations as a scalar test field. We find that the extra-
dimensional geometry can be stylised in the QNM effective potential as a squared mass-like term.
We then compute the corresponding QNM spectrum using three different numerical methods and
determine possible constraints for extra dimensions.
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The parameter space of models with higher-dimensional negative compact spaces appears
relatively under-explored when compared with their flat and positively-curved counterparts. Phe-
nomenologically, these models could be used to address the hierarchy problem and cosmological
observations [1]. Motivated by these, we investigate the manifold M4 × N3, where M4 is a flat
(3 + 1) spacetime and N3 is a 3D negative compact space,

d𝑠2
N3

= 𝛿𝑎𝑏𝑒
𝑎𝑒𝑏 = (𝑟1d𝑦1)2 + (𝑟2d𝑦2)2 + (𝑟3d𝑦3 + 𝑁𝑟1𝑟3d𝑦2)2 . (1)

This is the most general minimal left-invariant metric for a “nilmanifold", a twisted torus constructed
from the nilpotent Heisenberg algebra in Ref. [1]. Here, 𝑟 𝑖 are constant “radii‘ and 𝑁 = 𝑟1𝑟2f/𝑟3

with the structure constant f = − 𝑓 3
12 ≠ 0 serving as the “twist parameter".

In light of the regular detection of gravitational-wave (GW) events from compact binary coa-
lescences by the LIGO-Virgo-KAGRA (LVK) collaboration, interest in using GW data to constrain
extra-dimensional models is building. However, it is known that GW observations are not developed
enough to constrain extra-dimensional hypotheses; unlike collider searches, we have yet to obtain
precise final state signatures for which we can search [2]. For these reasons, we suggest a new
approach by which to probe extra dimensions within GW data that compares the quasinormal fre-
quency (QNF) spectrum of a black hole (BH) embedded in the M4 ×N3 manifold against searches
for parametric deviations from general relativity (GR) in post-merger GW emissions.

The BH response to a perturbation is dominated by quasinormal modes (QNMs) [3]; the
corresponding QNFs are referred to as the “fingerprints" of BHs since they can be computed
directly from the characteristic parameters of their BH source and vice-versa [4]. Here, we consider
the non-rotating, spherically-symmetric Schwarzschild BH (under units 𝐺 = 𝑐 = 1),

d𝑠2
BH = 𝑔BH

𝜇𝜈 d𝑥𝜇d𝑥𝜈 = − 𝑓 (𝑟)d𝑡2 + 𝑓 (𝑟)−1d𝑟2 + 𝑟2(sin2 d𝜃2 + d𝜙2) , (2)

where 𝑓 (𝑟) = 1− 2𝑀/𝑟 . Per the “no-hair" conjecture, such a black hole is fully characterised by its
mass 𝑀 [5]. Classically, energy cannot escape from within the event horizon 𝑟H = 2𝑀; at 𝑟 = ∞,
radiation may “leak out" but it cannot (re)enter the system. Thus, the intrinsic boundary conditions
of the system dictate that gravitational radiation is purely ingoing at the horizon and purely outgoing
at spatial infinity, rendering the QNM problem inherently dissipative.

From Eqs. (1) and (2), we describe the BH embedded in this higher-dimensional manifold
with a “Schwarzschild-nilmanifold metric", 𝑑𝑠2

7D = 𝑑𝑠2
BH + 𝑑𝑠2

nil. To model the behaviour of the BH
perturbations at the lowest linear approximation (where the perturbations are much smaller than
𝑔BH
𝜇𝜈 ), we may study the evolution of a scalar test field propagating on a fixed background (see Ref.

[6] for details). We express this behaviour through the QNM and its discrete set of QNFs,

Ψ𝑠
𝑛ℓ𝑚(z) =

∞∑︁
𝑛= 0

∞∑︁
ℓ,𝑚

𝜓𝑠𝑛ℓ (𝑟)
𝑟

𝑌 𝑠
𝑚ℓ (𝜃, 𝜙) 𝑍 (𝑦

1, 𝑦2, 𝑦3) 𝑒−𝑖𝜔𝑡 , 𝜔𝑠𝑛ℓ = 𝜔𝑅 − 𝑖𝜔𝐼 . (3)

Here, R𝑒{𝜔} is the physical oscillation frequency and I𝑚{𝜔} is the inverse damping rate. The
spin of the perturbing field is given by 𝑠 and 𝑚, ℓ are the usual azimuthal and angular numbers
associated with the spherical harmonic decomposition in 𝜃, 𝜙. The overtone number 𝑛 labels QNMs
by monotonically increasing multiples of |I𝑚{𝜔}|. The QNF spectrum is in turn dominated by the
least-damped, the longest-lived "fundamental mode": 𝑛 = 0, ℓ = 𝑚 = 2.

The evolution of a scalar field is described through the Klein-Gordon equation. For this
spacetime, recall that the Laplacian of a product space is the sum of its parts:

∇2Ψ(z) =
(
∇2

BH + ∇2
nil

)
Φ𝑠

𝑛ℓ𝑚(x)𝑍 (y) . (4)
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However, if we choose to encode the higher-dimensional behaviour through an effective mass term
representing a Kaluza-Klein tower of states, then we may describe the 7D scalar field evolution
through a 4D “massive" Klein-Gordon equation,

∇2
nil𝑍 (y) = −𝜇2𝑍 (𝑦1, 𝑦2, 𝑦3) ⇒ 1

√−𝑔 𝜕𝜇
(√−𝑔𝑔𝜇𝜈𝜕𝜈Ψ)

− 𝜇2Ψ = 0 . (5)

While spherical harmonics can be used to describe the angular part, it is the radial behaviour
that presents a characteristic wavelike equation containing the QNF and the effective scalar potential,

𝑑2𝜓

𝑑𝑟2
∗
+
(
𝜔2 −𝑉 (𝑟)

)
𝜓 = 0 , 𝑉 (𝑟) =

(
1 − 2𝑀

𝑟

) (
ℓ(ℓ + 1)

𝑟2 + 2𝑀
𝑟3 + 𝜇2

)
. (6)

We employ three numerical methods to calculate the QNF spectrum. Dolan and Ottewill’s
expansion method [7] expresses the QNF as a series in inverse parameters of ℓ. When we apply
their method to Eq. (6), we obtain a series expansion in terms of 𝜇 and 𝐿, and QNFs in excellent
agreement with those computed using the modified WKB [8] and Pöschl-Teller [9] methods. See
Table 1 for pertinent results. Note that when 𝜇2 > R𝑒{𝜔2}, the QNMs are no longer “propagative";
they become “evanescent" [10] and cannot be relied upon for this analysis.

To perform parameter estimation, tests of GR, and other analyses in the QNM regime, PyRing
[11–13] was developed. It is integrated within the LVK software infrastructure, combining observed
GW data with simulation and numerically-generated waveform templates. As a first step, we use
PyRing to run an agnostic test of GR-deviation in GW data from the GW150914 event using a Kerr
waveform template (see Figure 1). However, for improved accuracy, we report the results from the
hierarchical combination of LVK’s strongest bounds on GR deviations to date [14],

𝛿ω = 0.02+0.07
−0.07 , 𝛿𝜏 = 0.13+0.21

−0.22 . (7)

Suppose we set 𝜔GR = 𝜔𝜇=0 and use the computed QNF series expansion for the dominant
QNM 𝜔(ℓ = 2, 𝜇). Then we can use the real part of the QNF to constrain 𝜇, which yields the result

0.1747 < 𝜇 < 0.3681 . (8)

Thus, by using searches for parametric deviations from GR, we can place naive constraints on
an extra-dimensional scenario through a QNM analysis. Our next immediate step is to subject the
mass spectrum of the nilmanifold model studied in Ref. [1] to this constraint in order to extract
tangible bounds on the radius of the nilmanifold extra dimensions herein constructed.

𝜇 𝜔(ℓ, 𝜇) 𝛿ω 𝛿𝜏

0.0 0.4836 − 0.0968𝑖 0.0000 0.0000
0.1 0.4868 − 0.0968𝑖 0.0065 0.0113
0.2 0.4963 − 0.0924𝑖 0.0262 0.0473
0.3 0.5124 − 0.0868𝑖 0.0594 0.1149
0.4 0.5352 − 0.0787𝑖 0.1066 0.2302
0.5 0.5653 − 0.0676𝑖 0.1687 0.4306
0.6 0.6032 − 0.0532𝑖 0.2472 0.8206
0.7 0.6500 − 0.0343𝑖 0.3440 1.8181

Table 1: For increasing 𝜇, we compute the QNF spectrum using the Dolan-Ottewill method to order O(𝐿−6).
To correspond to the search for parametric deviations in GR, we structure our results for ω = R𝑒{𝜔} and the
damping time 𝜏 = −1/I𝑚{𝜔} as ω = ω𝜇=0 (1 + 𝛿ω) and 𝜏 = 𝜏𝜇=0 (1 + 𝛿𝜏), respectively.
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Figure 1: As a proof-of-concept, we perform a rudimentary parameter estimation of the GR deviations using
PyRing for event GW150914 (GW data sampled at 4096 Hz). We narrow priors to reduce computation cost.
With Corner, we plot the 2D posteriors and 1D histograms on (𝛿𝜔, 𝛿𝜏), where (0, 0) is the GR-predicted
value. Dashed lines and contours demarcate the 90% credible region; the blue line indicates the mean.
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