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We employ the method of Padé approximants to study the higher-order corrections of the massless
scalar-current quark correlator. We begin by testing this method in the large-V0 limit of QCD,
where the perturbative series is known to all orders, using it as a testing ground to determine the
best strategy to build the series at higher orders using only the first four coefficients. Applying
the procedure in QCD, we estimate the yet unknown coefficient 25 of order U5

B (six loops) of the
imaginary part of the correlator, directly related to Γ(� → 11̄), in a model-independent way
as 25 = −6900 ± 1400. We conclude that with this correction the series is almost insensitive to
renormalization scale variations. This corroborates that the QCD corrections to this decay are
under excellent control and the uncertainty of Γ(� → 11̄) will continue to be dominated by the
Standard Model parameters in the near future, mainly the strong coupling and the bottom-quark
mass.
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1. Introduction

Without direct observation of physics beyond Standard Model (SM) in the Large Hadron
Collider (LHC), it is necessary to increase the precision of both theoretical and experimental results
in order to unravel whatever theory is underlying the SM. The decay width of the Higgs boson is
dominated by the channel � → 11̄ and the higher-order corrections to this decay width are strongly
dominated by Quantum Chromodynamics (QCD).

The decay rate of Higgs into 11̄ is known up to fourth order (U4
B) in QCD for massless quarks [1]

and is related to the imaginary part of the quark-antiquark scalar-current correlator Π(B) as
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where #2 = 3, 0B = UB/c is the strong coupling, E2 is the Higgs vacuum expectation value and the
numerical values for the coefficients 2= are for # 5 = 5. Coefficients increase order by order and
such growing gives rise to the question of whether yet-unknown-terms may spoil the sequence due
to the renormalons of perturbation theory.

Since the perturbative series in QCD are at best asymptotic, it is useful to work with their
Borel transform [2]. The Borel transform is the inverse of the Laplace transform and it suppresses
the factorial divergence of the series coefficients. A fundamental feature of the Borel transform
is its singularities along the real axis in the Borel plane. These singularities are the renormalons
of perturbation theory and they govern the behavior of the perturbative series at intermediate and
higher orders [2].

Due to the difficulty in determining the corrections for the perturbative series of Γ(� → 11̄)
analytically, in this workwe employ amethod to estimate themissing higher orderswith the available
information in QCD. We apply Padé approximants to the Borel transform of the perturbative series
of two physical observables — which are then renormalization group invariant — ImΠ(B) and
Π′′(B), in order to reconstruct the series of the decay rate to higher orders.

2. Padé Approximants

In this section we give an outline of the Padé approximants concepts that are most relevant for
this work. A Padé approximant (PA), denoted by %"

#
(I), is used to approximate a function 5 (I)

whose Taylor series is known and it is given by a ratio of two polynomials, &" (I) and '# (I) of
orders " and # respectively [3]

%"# (I) =
&" (I)
'# (I)

=
00 + 01 I + 02 I

2 + · · · + 0" I"

1 + 11 I + 12 I2 + · · · + 1# I#
, (2)

where we used '(0) = 1. The PA parameters are determined by matching the Taylor coefficients of
5 (I) with the expansion of the PA. Hence, the approximant %"

#
(I) will reproduce the first" +# +1

coefficients of 5 (I) and the coefficients of higher orders are all estimates. The PAs approximate
more efficiently the original function when compared to the Taylor series. They are also systematic
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and model independent and they can reproduce the analytic properties of the function, such as the
renormalons. In addition, they yield good predictions for the higher-order coefficients [4].

It is expected that the QCD perturbative series for Γ(� → 11̄) has superimposed cuts. Hence
we employ another type of approximant called D-Log Padé approximants [3] because they are
designed to approximate functions with branch cuts. The aim is to approximate a new function
� (I) that does not have cuts, only simple poles, which is meromorphic and obtained from 5 (I) [3].
The D-Log Padé Dlog"# (I) to 5 (I) is then [3, 4]

Dlog"# (I) = 5norm(0) exp
{∫

dI′ %̄"# (I′)
}
. (3)

The Padé %̄"
#
(I′) is build to � (I) and the term 5norm(0) is an adjustable constant that reproduces

the function at I = 0. This value has to be added because, after calculating the derivative, this term
disappears. The D-Log PAs can estimate the location of the branch point and also the multiplicity
of the cut, since no assumptions about its position or its multiplicity are made.

3. Tests in the large-V0 limit

Before we show the results of QCD we apply the method in the large-V0 limit. This limit is a
simplified model where higher-order corrections are known to all orders in the coupling UB, which
can be used to evaluate quantitatively the method (more details can be found in Ref. [5]).

Weperformed a systematic study of different strategies inRef. [5] for the use of the approximants
to predict the higher-order coefficients of the perturbative series of the Borel transform of ImΠ(B)
and Π′′(B). We could observe that the PAs and the D-Log PA sequences appear to converge when
the order of the approximant is raised and they were also able to reproduce the leading renormalons
of the Borel transforms. It was also possible to note that the approximants that use only the first
three coefficients as input are not sufficiently accurate in their predictions for the coefficients and
the renormalons since they do not have enough information.

We could verify that the optimal method to determine the higher-order coefficients and the
singularities using the same amount of information available in QCD (i.e. four coefficients) was the
D-Log PAs applied to the Borel transform of the reduced second derivative. This relies on the fact
that �[Π′′] (D) displays a much simpler structure and the rernomalons — which are double poles
in Π′′(B) — become simple poles due to the use of the function � (I).

4. Results in QCD

In QCD, the renormalons are branch cuts [2, 6] and are located at the same position as the
renormalons in the large-V0 limit. Hence, the use of D-Log PAs, which was the most efficient
strategy found in our studies in large-V0, remains appealing since they tend to be a superior choice
for functions with branch cuts. Our final results were determined as follows: the central value is the
average between the largest and the smallest estimated coefficients and the uncertainty is given by
half of the maximum spread found between two PAs. Applying this prescription to the higher-order
coefficients of ImΠ(B) gives us up to eighth order [5]

25 = −6900±1400 26 = (0.3±3.5)×104 27 = (3.7±2.5)×105 28 = (0.2±2.4)×106 .

(4)
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One can notice that the errors of the coefficients of order higher than six are larger than 100%,
however they do not lead to significant uncertainties in the perturbative series due to their strong
UB suppression. Our result for 25, the first unknown coefficient in QCD, is in agreement with other
estimates in the literature obtained through different methods [7].

Our results for higher-order coefficients can be used to estimate the uncertainty in the Standard
Model calculation of the decay rate of Higgs into bottom quarks. Employing our final value for the
six loop coefficient, 25, we have at N5LO

Γ(� → 11̄) = 2.3806(+0.041
−0.027)<1 ± (0.0042)UB
± (0.0032)<� ± (0.0002)` ± (0.0003)PAs MeV, (5)

wherewe used<1 (<1) = 4.18+0.03
−0.02 GeV, UB (</ ) = 0.1179±0.0010,<� = 125.25±0.17 GeV [8].

The error identified with ` is related to the renormalization scale variation and was determined as
the maximum spread of the decay rate in the interval [<�/2, 2<� ] divided by two. We can notice
that the renormalization scale dependence is small at fifth order and the dominant uncertainties arise
from the QCD parameters — the bottom quark mass, the strong coupling as well as the Higgs mass.
The largest uncertainty remains the 1 mass even employing a value with an error 27% lower [9].
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