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We analyze invisible decay of neutrinos in the presence of oscillation and matter effects. The
inclusion of decay can be accommodated by a non-Hermitian effective Hamiltonian, with the
Hermitian component giving rise to oscillations, and the anti-Hermitian component leading to
the invisible decay of neutrinos. We consider the possibility that the oscillation and decay matrix
may not commute; in fact, in matter, they will invariably become non-commuting. This would
lead to a mismatch between the effective mass eigenstates and the decay eigenstates. Employing
a resummation of the Zassenhaus expansion, we develop a formalism for calculating the neutrino
oscillation probabilities in the two-flavor scenario. This technique can easily be extended to three
flavors.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:d.s.chattopadhyay@theory.tifr.res.in
mailto:kaustav.chk@gmail.com
mailto:amol@theory.tifr.res.in
mailto:sruba@prl.res.in
mailto:lakshmi.mohan@ncbj.gov.pl
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
1
2
4
1

Analytic treatment of neutrino oscillation and decay in matter Dibya S. Chattopadhyay

1. Introduction

It has been unequivocally established from neutrino oscillation experiments that neutrinos
have masses. This leads to neutrino flavor mixing during their propagation. However, the possi-
bility of new physics effects at a subleading level, such as neutrinos decaying to lighter invisible
states [1], remains.

The effective Hamiltonian for neutrino decay may be represented by a non-Hermitian matrix,
with its anti-Hermitian component corresponding to decay and the Hermitian component corre-
sponding to oscillations. These Hermitian and anti-Hermitian components may not commute,
leading to a mismatch in the mass and decay eigenstates. Even when these eigenstates coincide in
vacuum, matter effects make this mismatch inevitable.

In this Proceeding, we discuss the inevitability of the mismatch and present a novel technique
for computing the survival and conversion probabilities of neutrinos, for the scenario with oscillation
and invisible decay in constant matter density. We calculate the probabilities in the two-flavor limit,
although the technique can be extended to three flavors in a straightforward manner.

2. Formalism

The effective Hamiltonian in the basis of neutrino mass eigenstates in matter is

H𝑚 =

(
𝑎1 − 𝑖𝑏1 −1

2 𝑖𝛾𝑒
𝑖𝜒

− 1
2 𝑖𝛾𝑒

−𝑖𝜒 𝑎2 − 𝑖𝑏2

)
, (1)

where 𝑎𝑖 , 𝑏𝑖 , 𝛾, 𝜒 are real, with ‘𝑚’ denoting the matter basis. Since the decay matrix Γ𝑚 needs to
be positive semidefinite, 𝑏𝑖 ≥ 0 and 𝛾2 ≤ 4𝑏1𝑏2. The sign of 𝛾 is always taken to be positive.

As ensured by our choice of basis, the Hermitian part of this Hamiltonian is diagonal. The
anti-Hermitian part on the other hand is composed of both diagonal and off-diagonal components,
regulated by 𝑏𝑖 and 𝛾 respectively. Note that 𝑏𝑖 = [Γ𝑚]𝑖𝑖/2 is simply the diagonal contribution to
the decay, and 𝛾𝑒𝑖𝜒 = [Γ𝑚]12 = [Γ𝑚]∗21 regulates the amount of mismatch between the oscillation
and decay eigenstates.

Even for the simplified scenario where only the mass eigenstate 𝜈2 in vacuum decays (with
lifetime 𝜏2), matter effects lead to the identification:

𝑎1,2 =
𝑚̃2

1,2

2𝐸
, 𝑏1,2 =

𝛼2
4𝐸

[1 ∓ cos[2(𝜃 − 𝜃𝑚)] , (2)

𝜒 = 0 , 𝛾 =
𝛼2
2𝐸

sin[2(𝜃 − 𝜃𝑚)] , (3)

where, 𝑚̃𝑖 (𝑚𝑖) and 𝜃𝑚(𝜃) are the mass eigenvalues and mixing angle in matter (vacuum), and
𝛼2 ≡ 𝑚2/𝜏2. Note how all the elements of the Γ𝑚 matrix are non-zero (𝑏1, 𝑏2, 𝛾 ≠ 0) due to matter
effects, leading to both the neutrino mass eigenstates showing decaying behavior. This shows that
the mismatch between the decay and oscillation eigenstates is inevitable in the presence of matter.
This simple mapping, previously not explicitly given in the literature, gives the correct analytic
probability expressions for decaying neutrinos in matter. In the vacuum limit (𝜃𝑚 → 𝜃, 𝑚̃𝑖 → 𝑚𝑖 ,
𝑏1 → 0 and 𝛾 → 0) one obtains the standard probabilities in vacuum [2].
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For our analysis, we define the parameter 𝑑𝑖 ≡ 𝑎𝑖 − 𝑖𝑏𝑖 , the differences Δ𝑎 ≡ 𝑎2 − 𝑎1,
Δ𝑏 ≡ 𝑏2 − 𝑏1, Δ𝑑 ≡ 𝑑2 − 𝑑1, and the dimensionless quantities

𝛾̄ ≡ 𝛾/|Δ𝑑 | , Δ̄𝑎 ≡ Δ𝑎/|Δ𝑑 | , Δ̄𝑏 ≡ Δ𝑏/|Δ𝑑 | . (4)

We also express the term −𝑖H𝑚𝑡 = − 𝑖𝑡
2 (𝑑1 + 𝑑2) I + X + Y, in terms of the identity matrix I and

X ≡ − 𝑖 Δ𝑑 𝑡

2

(
−1 0
0 1

)
,Y ≡ −𝛾𝑡

2

(
0 𝑒𝑖𝜒

𝑒−𝑖𝜒 0

)
. (5)

3. Zassenhaus Expansion

To calculate the evolution matrix exp(−𝑖H𝑚𝑡) in the matter basis, we first need to calculate the
quantity 𝑒X+Y. Since X and Y do not commute in general, this may be expressed in terms of the
Zassenhaus (inverse BCH) expansion [3] as an infinite series:

𝑒X+Y = 𝑒X 𝑒Y 𝑒−
1
2 [X,Y] 𝑒

1
6 (2[Y, [X,Y] ]+[X, [X,Y] ]) ... (6)

Note that |Y| ∼ 𝛾̄ |X| and LXY ∼ 𝛾̄ |X|2. Here the absolute sign ‘( | · |)’ represents the value of
a typical element in the matrix. Therefore, for higher-order commutators, L𝑘−1

X Y ∼ 𝛾̄ |X|𝑘 . This
implies that it would be erroneous to truncate the expansion in eq. (6) after a particular fixed order
of commutators of our choice. We need to collect all 𝑂 (𝛾̄𝑘) terms for all values of ‘𝑘’ from
commutators of all orders by performing a resummation procedure over the infinite series. This is
achieved by employing the expression for Zassenhaus expansion in terms of a resummed series [4]:

𝑒X+Y =

(
1 +

∞∑︁
𝑝=1

∞∑︁
𝑛1,...,𝑛𝑝=1

𝑛𝑝 ...𝑛1

𝑛𝑝 (𝑛𝑝 + 𝑛𝑝−1)...(𝑛𝑝 + ... + 𝑛1)
Y𝑛𝑝

...Y𝑛1

)
𝑒X , (7)

where Y𝑛 = 1
𝑛!L

𝑛−1
X Y. For calculating the expansion up to 𝑂 (𝛾̄) and 𝑂 (𝛾̄2), we can truncate the

summation at 𝑝 = 1 and 𝑝 = 2, respectively. For an accuracy of 𝑂 (𝛾̄2), we have

𝑒X+Y ≈
(
1 +

∞∑︁
𝑛1=1

Y𝑛1 +
∞∑︁

𝑛1=1

∞∑︁
𝑛2=1

𝑛1
(𝑛1 + 𝑛2)

Y𝑛2Y𝑛1

)
𝑒X, (8)

with the double summation term not required for 𝑂 (𝛾̄) accuracy.

4. Two-Flavor Oscillation Probabilities

The neutrino mixing probability 𝑃𝛽𝛼 ≡ 𝑃(𝜈𝛽 → 𝜈𝛼) may be obtained by calculating the flavor
conversion amplitude [A 𝑓 ]𝛼𝛽, with the probability given by 𝑃𝛽𝛼 = | [A 𝑓 ]𝛼𝛽 |2. One may express

A 𝑓 =

[
𝑈𝑚(𝜃𝑚) 𝑒−𝑖H𝑚𝑡 𝑈†

𝑚(𝜃𝑚)
]
𝛼𝛽

=

(
𝑔−(𝑡) 𝐴(𝜒) + 𝑔+(𝑡) 𝑔−(𝑡) 𝐵(𝜒)

𝑔−(𝑡) 𝐵(−𝜒) −𝑔−(𝑡) 𝐴(𝜒) + 𝑔+(𝑡)

)
, (9)

where 𝑔±(𝑡) = 1
2 (𝑒

−𝑖𝑑2𝑡 ± 𝑒−𝑖𝑑1𝑡 ) and 𝜃𝑚 is the mixing angle in matter in the no-decay limit, with
the corresponding unitary matrix 𝑈𝑚. The coefficients 𝐴(𝜒) and 𝐵(𝜒) are given in Table 1.
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Table 1: The quantities appearing in A 𝑓 in eq. (9), calculated up to 𝑂 (𝛾̄).

Term Expression

𝐴(𝜒) ≡ 𝐴(0) + 𝛾𝐴(1) − cos 2𝜃𝑚 − 𝑖
𝛾

Δ𝑑

sin 2𝜃𝑚 cos 𝜒

𝐵(𝜒) ≡ 𝐵 (0) + 𝛾𝐵 (1) sin 2𝜃𝑚 − 𝑖
𝛾

Δ𝑑

(
cos 2𝜃𝑚 cos 𝜒 + 𝑖 sin 𝜒

)
Table 2: The quantities in the analytic probability expressions in eqs. (10) and (11), calculated up to 𝑂 (𝛾̄).

Term Expression Term Expression
Re(𝐴) − cos 2𝜃𝑚 + 𝛾̄Δ̄𝑏 sin 2𝜃𝑚 cos 𝜒 |𝐴|2 cos2 2𝜃𝑚 − 2𝛾̄Δ̄𝑏 sin 2𝜃𝑚 cos 2𝜃𝑚 cos 𝜒
Im(𝐴) −𝛾̄Δ̄𝑎 sin 2𝜃𝑚 cos 𝜒 |𝐵|2 sin2 2𝜃𝑚 + 2𝛾̄ sin 2𝜃𝑚

(
Δ̄𝑎 sin 𝜒 + Δ̄𝑏 cos 2𝜃𝑚 cos 𝜒

)
The survival probability for 𝜈𝛼 → 𝜈𝛼 is given by [5]

𝑃𝛼𝛼 =
𝑒−(𝑏1+𝑏2)𝑡

2

[
(1+|𝐴|2) cosh(Δ𝑏𝑡)+(1−|𝐴|2) cos(Δ𝑎𝑡)−2Re(𝐴) sinh(Δ𝑏𝑡)+2Im(𝐴) sin(Δ𝑎𝑡)

]
,

(10)
with 𝑃𝛽𝛽 = 𝑃𝛼𝛼 (𝐴 → −𝐴). The probability for 𝜈𝛽 → 𝜈𝛼 conversion is

𝑃𝛽𝛼 =
𝑒−(𝑏1+𝑏2)𝑡

2
|𝐵(𝜒) |2 [cosh(Δ𝑏𝑡) − cos(Δ𝑎𝑡)] , (11)

with 𝑃𝛼𝛽 = 𝑃𝛽𝛼 (𝜒 → −𝜒). The functional form of the explicit expressions used in eqs. (10) and
(11) are given in Table 2. Note that, within the two-flavor approximation in the absence of neutrino
decay, i.e. 𝑏1 = 𝑏2 = 𝛾 = 0, we have 𝑃𝛼𝛼 = 𝑃𝛽𝛽 and 𝑃𝛽𝛼 = 𝑃𝛼𝛽 . These equalities are no longer
true in the scenario with invisible decay of neutrinos.

Following a similar technique as before and considering the contribution from the double
summation term, we may also calculate the neutrino flavor conversion probabilities up to 𝑂 (𝛾̄2).
Expressing the difference of the exact eigenvalues as Δ𝐷 =

√︃
Δ2
𝑑
− 𝛾2, the 2-flavor probabilities at

𝑂 (𝛾̄2) can be written in the same form as in eqs. (10) and (11) with the replacements

Δ𝑎 → Re(Δ𝐷) , Δ𝑏 → −Im(Δ𝐷) . (12)

Further, we also need to replace the entries in Table 1 by

𝐴(𝜒) → 𝐴(0) + 𝛾𝐴(1) − 𝛾2 cos 2𝜃𝑚/(2Δ2
𝑑) , 𝐵(𝜒) → 𝐴(0) + 𝛾𝐴(1) + 𝛾2 sin 2𝜃𝑚/(2Δ2

𝑑) , (13)

with the relevant quantities in Table 2 calculated using the replacement rule in eq. (13).

5. Numerical Comparison

Let us explore the accuracy of our analytic expressions towards the exact neutrino oscillation
probabilities within the 2-flavor formalism, when higher and higher order contributions from 𝛾̄ are
included in the analytic expansion.
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Figure 1: The survival probability 𝑃𝜇𝜇 calculated exactly, and the analytic approximations in the text, in the
presence and absence of neutrino decay [Left]. And the accuracy of our analytic expressions, i.e., differences
between the analytic approximations and the exact numerical results in the presence of decay [Right]. The
thick (thin) lines in the right panel correspond to Δ𝑃𝜇𝜇 > 0 (Δ𝑃𝜇𝜇 < 0). The sharp dips occur at energies
where our analytic expressions and the exact probabilities match.

To show the effect of off-diagonal elements, we consider the survival probability 𝑃(𝜈𝜇 → 𝜈𝜇)
with energy 𝐸 ∼ GeV, for a baseline of 295 km, with 𝜃𝑚 = 45◦. Further, we take Δ𝑎 = 2.56 ×
10−3 eV2/(2𝐸), with the decay parameters (𝑏1, 𝑏2, 𝛾) = (3, 6, 8) × 10−5 eV2/(2𝐸), 𝜒 = 𝜋/4 to
illustrate the importance of considering the off-diagonal ‘mismatch’ contribution. Note that we
satisfy 𝑏1, 𝑏2 � |Δ𝑎 |, since the effects of decay should be subdominant to the effects of oscillations,
and 𝛾2 ≤ 4𝑏1𝑏2, since the decay matrix needs to be positive semi-definite.

In the left panel of Fig. 1, we show the probability 𝑃𝜇𝜇 (𝐸) without decay, the exact probability
calculated numerically and analytic expressions up to 𝑂 (𝛾̄) and 𝑂 (𝛾̄2) in the presence of decay.
The erroneous analytic approximation that neglects the commutator [X,Y] is also shown. In the
right panel of Fig. 1, the convergence towards the exact solution is very clearly demonstrated, where
we plot the absolute accuracy defined as

Δ𝑃𝜇𝜇 ≡ 𝑃𝜇𝜇(analytic) − 𝑃𝜇𝜇(exact) . (14)

The inclusion of𝑂 (𝛾̄) and𝑂 (𝛾̄2) terms is seen to be improving the accuracy by orders of magnitude.

6. Conclusion

The physics of neutrino decay and oscillation is characterized by a non-Hermitian effective
Hamiltonian that cannot be diagonalized by a unitary transformation. Furthermore, even if the
decay and mass eigenstates are the same in vacuum, matter effects invariably introduce mismatch
between the two, warranting a more methodical treatment.

We perform our analysis in the basis of mass eigenstates in matter that one may obtain in the
no-decay limit. This crucial step makes the Hermitian component of the Hamiltonian diagonal.
We demonstrate the inevitability of the above mismatch in the presence of matter effects, even
within the simple two-flavor approximation. This means that the Zassenhaus expansion can not be
truncated to a fixed order of commutators. We resolve this issue by introducing a resummation in
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the Zassenhaus expansion, and compute the neutrino oscillation probabilities perturbatively in the
mismatch parameter 𝛾̄. Such a formulation has been used to treat propagation of invisibly decaying
neutrinos in matter for the first time in [5].

The framework described above can be extended to the three-flavor scenario. In the One Mass
Scale Dominance (OMSD) approximation, the three-flavor oscillation probabilities can be written
in terms of effective two-flavor oscillation probabilities by choosing an appropriate basis. Further,
we can employ expansions in small parameters 𝜃13, Δ𝑚

2
21/Δ𝑚

2
31 and the normalized decay widths

to calculate the three-flavor oscillation probabilities more precisely [6].
The techniques described here can be employed for various other phenomena beyond the

neutrino decay hypothesis, viz., axion-photon mixing in a semi-opaque medium, and the combined
treatment of oscillations and absorption for high energy neutrinos.

Acknowledgment

D.S.C. acknowledges the Infosys-TIFR Leading Edge Travel Grant. S.G. and L.S.M. would like
to thank S. Choubey and C. Gupta for useful discussions. A.D. and D.S.C. acknowledges support
from the Department of Atomic Energy (DAE), Government of India, under Project Identification
No. RTI4002. S.G. acknowledges the J. C. Bose Fellowship (JCB/2020/000011) of Science and
Engineering Research Board of Department of Science and Technology, Government of India.

References

[1] J.N. Bahcall, N. Cabibbo and A. Yahil, Are neutrinos stable particles?, Phys. Rev. Lett. 28
(1972) 316.

[2] M. Lindner, T. Ohlsson and W. Winter, A Combined treatment of neutrino decay and neutrino
oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170].

[3] W. Magnus, On the exponential solution of differential equations for a linear operator,
Communications on Pure and Applied Mathematics 7 (1954) 649.

[4] T. Kimura, Explicit Description of the Zassenhaus Formula, PTEP 2017 (2017) 041A03
[arXiv:1702.04681].

[5] D.S. Chattopadhyay, K. Chakraborty, A. Dighe, S. Goswami and S.M. Lakshmi, Neutrino
Propagation When Mass Eigenstates and Decay Eigenstates Mismatch, Phys. Rev. Lett. 129
(2022) 011802 [arXiv:2111.13128].

[6] D.S. Chattopadhyay, K. Chakraborty, A. Dighe and S. Goswami, Analytic treatment of
3-flavor neutrino oscillation and decay in matter, arXiv:2204.05803.

6

https://doi.org/10.1103/PhysRevLett.28.316
https://doi.org/10.1103/PhysRevLett.28.316
https://doi.org/10.1016/S0550-3213(01)00237-1
https://arxiv.org/abs/hep-ph/0103170
https://doi.org/https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1093/ptep/ptx044
https://arxiv.org/abs/1702.04681
https://doi.org/10.1103/PhysRevLett.129.011802
https://doi.org/10.1103/PhysRevLett.129.011802
https://arxiv.org/abs/2111.13128
https://arxiv.org/abs/2204.05803

	Introduction
	Formalism
	Zassenhaus Expansion
	Two-Flavor Oscillation Probabilities
	Numerical Comparison
	Conclusion

