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The recent measurement of the muon g-2 at Fermilab confirms the previous Brookhaven result.
The leading hadronic vacuum polarization (HVP) contribution to the muon g-2 represents a
crucial ingredient to establish if the Standard Model prediction differs from the experimental
value. A recent lattice QCD result by the BMW collaboration shows a tension with the low-
energy e+e− → hadrons data which are currently used to determine the HVP contribution. We
refer to this tension as the new muon g-2 puzzle. In this contribution, we assess the possibility to
solve this puzzle invoking new physics contributions to the e+e− → hadrons cross-section.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:paride.paradisi@pd.infn.it
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
1
2
4
2

New physics behind the new muon g-2 puzzle? Paride Paradisi

1. Introduction

The anomalous magnetic moment of the muon, aµ ≡(gµ−2)/2, has provided a persisting hint
of new physics (NP) for many years. The recent aµ measurement by the Muon g-2 collaboration
at Fermilab has confirmed the earlier result by the E821 experiment at Brookhaven, yielding the
average aEXP

µ =116592061(41)×10−11. The comparison of this result with the Standard Model (SM)
prediction aSM

µ =116591810(43)×10−11 of the Muon g-2 Theory Initiative [1] leads to an intriguing
4.2σ discrepancy [2]

∆aµ = aEXP
µ − aSM

µ = 251 (59) × 10−11 . (1)

The expected forthcoming results of the Fermilab experiment plan to reach a sensitivity four-times
better than the E821 one.

On the theory side, the only source of sizable uncertainties in aSM
µ stems from the non-

perturbative contributions of the hadronic sector, which have been under close scrutiny for several
years. The SM prediction aSM

µ in Eq. (1) has been derived by the Muon g-2 Theory Initiative [1]
using (aHVP

µ )TI
e+e−

, the leading hadronic vacuum polarization (HVP) contribution to the muon g-2
based on low-energy e+e−→hadrons data. Alternatively, the HVP contribution has been computed
using a first-principle lattice QCD approach [1]. Recently, the BMW lattice QCD collaboration
(BMWc) computed the leading HVP contribution to the muon g-2 with sub per-cent precision,
finding a value, (aHVP

µ )BMW, larger than (aHVP
µ )TI

e+e−
[3]. If (aHVP

µ )BMW is used to obtain aSM
µ instead of

(aHVP
µ )TI

e+e−
, the discrepancy with the experimental result is reduced to 1.6σ only. The above results

are respectively

(aHVP
µ )TI

e+e− = 6931 (40) × 10−11 , (aHVP
µ )BMW = 7075 (55) × 10−11 . (2)

The present situation regarding the leading HVP contribution to the muon g-2 can be schematically
represented as in Fig. 1, where (aHVP

µ )EXP is the value of the HVP contribution required to exactly
match aEXP

µ assuming no NP. The difference between the discrepancies in Fig. 1 has been referred
to as the new muon g-2 puzzle [4].

Figure 1: The new muon g-2 puzzle: 4.2σ vs. 1.6σ [4].

Assuming that both (aHVP
µ )TI

e+e−
and (aHVP

µ )BMW are correct, we ask whether this puzzle can be
solved thanks to NP effects which would bring (aHVP

µ )TI
e+e−

in agreement with (aHVP
µ )BMW, without

spoiling the 1.6σ agreement of (aHVP
µ )BMW with (aHVP

µ )EXP. Differently from what has been usually
done in the literature [5], here we do not assume a direct NP contribution to ∆aµ (i.e. new states that
couple directly to muons). If fact, by itself this possibility could solve the longstanding discrepancy
in Eq. (1), but not the new muon g-2 puzzle. Instead, in order to solve the latter, we invoke NP
that modifies the e+e− → hadrons cross-section σhad.1 An increase of σhad, due to an unforeseen

1The possibility of reconciling the data driven and the BMWc lattice determinations of aHVP
µ by rescaling the KLOE
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Figure 2: Examples of NP contributions to σhad via FSR (first and second diagram) and via a NP tree-level
mediator coupled both to hadrons and electrons (third diagram) [4].

missing contribution, has been already proposed to enhance (aHVP
µ )TI

e+e−
and solve ∆aµ [7]. However,

the required shift in σhad is disfavoured by the electroweak fit if it occurs at
√

s & 1 GeV [7]. Hence,
hereafter, we will consider NP modifications of σhad below the GeV scale.

2. Model-independent analysis

Let us examine the general properties of NP models aiming at solving the new muon g-2 puzzle
via a modification of σhad. To this end, we introduce the dispersion relation

(aHVP
µ )e+e− =

α

π2

∫ ∞

m2
π0

ds
s

K(s) ImΠhad(s) , (3)

where K(s) is a positive-definite kernel function with K(s) ≈ m2
µ/3s for

√
s � mµ. This equation

defines the HVP contribution to the muon g-2 in terms of the photon HVP, Πhad, which includes
possible NP effects. If the possible NP entering the photon HVP does not couple to electrons, i.e. it
does not enter the hadronic cross-section at tree level, then Eq. (3) can be written as

(aHVP
µ )e+e− =

1
4π3

∫ ∞

m2
π0

ds K(s)σhad(s) , (4)

where σhad includes final-state radiation (FSR), whereas both vacuum polarization and initial-state
radiation (ISR) effects are subtracted. In particular, vacuum polarization corrections can be simply
accounted for by multiplying the experimental cross-section by |α/α(s)|2, while the correction of
ISR and ISR/FSR interference effects is addressed by each experimental collaboration. In this
proceeding, we will focus on the region where σhad is experimentally determined, i.e.

√
s & 0.3

GeV, since this gives the by far dominant contribution to the dispersive integral in Eq. (4).
In Fig. 2 we show a schematic classification of how NP can enter σhad. The first two diagrams

are representative of FSR effects, which also unavoidably affect the photon HVP at the next-to-
leading order (NLO). We can safely neglect possible NP contaminations in ISR since the bounds
on NP couplings to electrons are very severe. The third diagram, where NP enters the hadronic
cross-section at tree level coupling both to hadrons and electrons, is due to NP that also modifies
the photon HVP at NLO. Crucially, however, its dominant contribution to the muon g-2 emerges
via the tree-level shift of σhad.

Hence, when invoking NP inσhad, there are two different scenarios to be considered, depending
on whether NP couples only to hadrons or both to hadrons and electrons. In the following, we
analyze these two possibilities and their capability to solve the new muon g-2 puzzle.

luminosity via a NP contribution to Bhabha scattering has been discussed in Ref. [6].
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1. NP coupled only to hadrons. This scenario is schematically represented by the first two
diagrams of Fig. 2. As remarked above, real and virtual FSR must be included in σhad. However,
in order to establish the impact of NP in FSR (which depends on the interplay between the mass
scale of NP and the experimental cuts), it would be mandatory to perform dedicated experimental
analyses imposing the various selection cuts specific of each experimental setup. Since the full
photon FSR effect estimated in scalar QED amounts only to 50 × 10−11 [1], and given that light
NP couplings with the SM particles are tightly constrained, the NP contributions in FSR can hardly
solve the new muon g-2 puzzle.

2. NP coupled both to hadrons and electrons. If NP contributes to σhad at tree level (see
third diagram in Fig. 2), then only the subtracted cross-section σhad − ∆σ

NP
had should be included in

Eq. (4). We note that the latter can be larger than σhad if ∆σNP
had < 0, thus requiring that the NP

contribution is dominated by a negative interference with the SM. As (aHVP
µ )TI

e+e−
has been computed

using σhad rather than the subtracted cross-section σhad − ∆σ
NP
had, the theoretical prediction of the

HVP contribution in Eq. (4) is

(aHVP
µ )e+e− = (aHVP

µ )TI
e+e− + (a

HVP
µ )NP , (5)

where (aHVP
µ )NP describes NP effects at LO, due to the tree-level exchange of the NP mediator (see

third diagram in Fig. 2), as well as at NLO. Instead, (aHVP
µ )BMW should be shifted only by NLO NP

effects. Remarkably, this scenario may allow to match Eq. (5) with (aHVP
µ )EXP, while keeping at the

same time the agreement with the BMWc lattice result.

3. Light new physics analysis

We now explore whether the second scenario envisaged above can be quantitatively realized
in an explicit NP model. Motivated by the fact that the kernel function in Eq. (4) scales like 1/s
and by the fact that modifications of σhad above ∼ 1 GeV are disfavoured by electroweak precision
tests, we focus on the sub-GeV energy range, where the dominant contribution to σhad arises from
the e+e− → π+π− channel. In fact, in the SM, this channel accounts for more than 70% of the full
hadronic contribution to the muon g-2. Furthermore, the requirement of having a sizeable negative
interference with the SM amplitude narrows down the general class of NP models. Indeed, the
interference of scalar couplings with the SM vector current is suppressed by the electron mass,
while pseudoscalar and axial couplings do not interfere. Hence, we focus on the tree-level exchange
of a light Z ′ boson with the following vector couplings to electrons and first-generation quarks

LZ′ ⊃ (geV eγµe + gqV qγµq)Z ′
µ , (6)

with q = u, d and mZ′ . 1 GeV.
Defining σSM+NP

ππ = σSM
ππ + ∆σ

NP
ππ , the tree-level exchange of the Z ′ with width ΓZ′ leads to

σSM+NP
ππ

σSM
ππ
=

�����1 + geV (g
u
V − gdV )

e2
s

s − m2
Z′ + imZ′ΓZ′

�����2 , (7)

where the pion vector form factor cancels out in the ratio.
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The dispersive contribution to the muon g-2 due to SM and NP can be obtained by using
σhad −∆σ

NP
had in Eq. (4). Imposing that the current discrepancy ∆aµ is solved by NP in the hadronic

cross-section, we obtain
∆aµ =

1
4π3

∫ ∞

sexp

ds K(s)(−∆σNP
had(s)) , (8)

where the lower integration limit is sexp ≈ (0.3 GeV)2, that is, the integral is performed in the
data-driven region for the ππ channel. Approximating ∆σNP

had ≈ ∆σNP
ππ , from Eq. (7) we find

∆σNP
had(s) ≈ σ

SM
ππ(s) ×

2εs(s − m2
Z′) + ε2s2

(s − m2
Z′)2 + m4

Z′γ2
, (9)

where we introduced the effective coupling ε ≡ geV (g
u
V − gdV )/e2 and the adimensional width

parameter γ ≡ ΓZ′/mZ′. If both the Z ′ → ee and Z ′ → π+π− channels are kinematically open, the
associated decay widths (normalized to mZ′) read, respectively

γee ≈
(geV )

2

12π
= 2.7 × 10−10

(
geV

10−4

) 2
, γππ =

(guV − gdV )
2

48π
|FV

π (m2
Z′)|

2

(
1 −

4m2
π

m2
Z′

) 3/2

, (10)

where |FV
π (m2

Z′)|
2 (normalized to FV

π (0) = 1) can be enhanced up to a factor of 45 by the ρ resonance
[8]. In the following, we are going to inspect whether the region of the parameter space of the
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Figure 3: Z ′ contribution to ∆aµ via a modification of σhad vs. Z ′ constraints [4].

Z ′ model needed to explain ∆aµ is allowed by experimental constraints. These can be divided for
convenience in three classes: 1. semi-leptonic processes; 2. purely leptonic processes and 3. purely
hadronic, iso-spin violating observables. The interplay of the above constraints in the plane −geV
vs. guV − gdV is displayed in Fig. 3 for two representative scenarios where mZ′ = 0.1 and 0.5 GeV.
The directions of the arrows indicate the excluded regions by the different experimental bounds.
Instead, the red band is the region favoured by the explanation of the muon g-2 discrepancy. From
Fig. 3 it is clear that, irrespectively of the Z ′ mass, there are always at least two independent bounds
preventing to solve the new muon g-2 puzzle.
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4. Conclusions

The recent lattice QCD result by the BMW collaboration shows a tension with the low-
energy e+e− → hadrons data currently used to determine the HVP contribution to the muon
g-2. A possible way to restore full consistency into the picture is to postulate a negative shift
in σhad due to NP. We showed that this scenario requires the presence of a light NP mediator
that modifies the experimental cross-section σhad. However, this non-trivial setup, where NP
hides in e+e− → hadrons data, is excluded by a number of experimental constraints. Alternative
confirmations of the e+e− determinations of the HVP contribution to the muon g-2, based on
either additional lattice QCD calculations or direct experimental measurements, as proposed by the
MUonE experiment [9] will hence be crucial to shed light on this intriguing puzzle.
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