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The convex geometric framework of positivity bounds allows us to explore the ultraviolet (UV)
states in new physics models from the bottom up. The UV states in three types of seesaw models
for tiny Majorana neutrino masses, as irreducible representations of the SU(2)L gauge group,
naturally fit into this framework. Since neutrino masses arising from the dimension-five Weinberg
operator imply that the UV states may couple to the left-handed lepton doublet 𝐿 and the Higgs
doublet 𝐻, we construct a convex cone of positivity bounds to constrain the dimension-eight
operators consisting of 𝐿 or 𝐻. Such a construction offers a novel way to distinguish between
different seesaw models and derive lower bounds on the seesaw scale.
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1. Introduction

The origin of neutrino masses is one of the tantalizing puzzles of Standard Model (SM), while
it can be explained in the framework of the Standard Model effective field theory (SMEFT) through
the dimension-five (dim-5) Weinberg operator O (5) ≡ 𝐿�̃��̃�T𝐿c [1]. Therefore, it is very likely
that new physics accounting for neutrino masses is connected to the left-handed lepton doublet 𝐿
and the Higgs doublet 𝐻. The type-I, type-II and type-III seesaw models are tree-level ultraviolet
(UV) completions of the Weinberg operator, but they are indistinguishable up to dim-5. To explore
the origin of neutrino masses, one may turn to higher-dimensional operators in the corresponding
low-energy effective field theories (EFT’s).

In this connection, the positivity bounds, which are robust constraints on the Wilson coefficients
(WC’s) in the EFT arising from the axiomatic principles of quantum field theories, prove to be very
helpful. Based on the geometrical perspective [2], the positivity bounds that apply to dimension-
eight (dim-8) operators, can be used to reconstruct the UV theory from low-energy observables,
known as the “inverse problem”. In this formalism, the positivity bounds are normal vectors of a
convex cone in the dim-8 WC space. The UV states living in the irreducible representations (irrep’s)
of the symmetries of the 𝑆-matrix are projected into the WC space and form a convex hull. The
heavy particles in the seesaw models are all in the irrep’s of the SM gauge symmetry, implying a
profound relation between the origin of neutrino masses and the EFT with dim-8 operators. Solving
the inverse problem provides us with a novel way to identify the seesaw model and understand the
nature of neutrino masses.

2. Theoretical Formalism

We focus on the second derivative of the forward 2-to-2 amplitudesM𝑖 𝑗→𝑘𝑙 (𝑠, 𝑡 → 0) with
respect to 𝑠 (where 𝑠, 𝑡 are the ordinary Mandelstam variables, and 𝑖, 𝑗 , 𝑘, 𝑙 are the particle indices),
which is defined as

𝑀 𝑖 𝑗𝑘𝑙 ≡ lim
𝑠→0

𝑑2M𝑖 𝑗→𝑘𝑙 (𝑠)
𝑑𝑠2 . (1)

Utilizing the analyticity and unitarity, as well as the generalized optical theorem at the tree level,
the dispersion relation can recast Eq. (1) into [3]

𝑀 𝑖 𝑗𝑘𝑙 =
1

2𝜋

∫ ∞

(𝜀Λ)2

𝑑𝜇

𝜇3

∑
𝑋 ∈r

[
M𝑖 𝑗→𝑋M∗𝑘𝑙→𝑋 + ( 𝑗 ↔ 𝑙)

]
, (2)

where the summation is over all the intermediate UV states 𝑋 and ( 𝑗 ↔ 𝑙) is the crossing channel.
We choose 𝑋 to be the irrep r of the SU(3) ⊗ SU(2)L ⊗ U(1)Y gauge group, the particles 𝑖 and 𝑗

belong to the irrep r𝑖 and r 𝑗 , respectively. By the decomposition rule r𝑖 ⊗ r 𝑗 =
∑

𝛼 𝐶
𝑖, 𝑗
r,𝛼r, where

𝐶
𝑖, 𝑗
r,𝛼 are the Clebsch-Gordan (CG) coefficients and the summation over all the states 𝛼’s in r is

implied. We are able to rewrite Eq. (2) as below:

𝑀 𝑖 𝑗𝑘𝑙 =
1

2𝜋

∫ ∞

(𝜀Λ)2
𝑑𝜇

𝜇3

∑
𝑋 in r

|〈𝑋 |M|r〉|2 G𝑖 𝑗𝑘𝑙
r , (3)
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𝐿𝐿𝐻𝐻 𝐿𝐿𝐿𝐿 𝐻𝐻𝐻𝐻

O1 = ( �̄�𝛾𝜇i←→𝐷𝜈𝐿)
(
𝐷𝜇𝐻†𝐷𝜈𝐻

)
O3 = 𝜕𝜈

(
�̄�𝛾𝜇𝐿

)
𝜕𝜈

(
�̄�𝛾𝜇𝐿

)
O5 =

(
𝐷𝜇𝐻

†𝐷𝜈𝐻
) (
𝐷𝜈𝐻†𝐷𝜇𝐻

)
O2 = ( �̄�𝛾𝜇𝜎𝐼 i←→𝐷𝜈𝐿)

(
𝐷𝜇𝐻†𝜎𝐼𝐷𝜈𝐻

)
O4 = 𝜕𝜈

(
�̄�𝛾𝜇𝜎𝐼 𝐿

)
𝜕𝜈

(
�̄�𝛾𝜇𝜎

𝐼 𝐿
)
O6 =

(
𝐷𝜇𝐻

†𝐷𝜈𝐻
) (
𝐷𝜇𝐻†𝐷𝜈𝐻

)
O7 =

(
𝐷𝜇𝐻

†𝐷𝜇𝐻
) (
𝐷𝜈𝐻

†𝐷𝜈𝐻
)

Table 1: Independent operators consisting of the lepton doublet 𝐿 or the Higgs doublet 𝐻 at dimension-eight.
Note that there are also two 𝐿𝐿𝐻𝐻 type dim-8 operators, but they don’t contribute to the amplitudes in the
forward limit.

with G𝑖 𝑗𝑘𝑙
r ≡ ∑

𝛼 𝐶
𝑖, 𝑗
r,𝛼

(
𝐶𝑘,𝑙

r,𝛼

)∗
+ ( 𝑗 ↔ 𝑙) being defined as the “generator". In Eq. (3), the 𝑀 𝑖 𝑗𝑘𝑙 can

be viewed a positive combination of G𝑖 𝑗𝑘𝑙
r ’s from different irrep’s, means it is constrained inside a

convex cone. The extremal ray (ER) of the convex cone is defined as the element that cannot be
decomposed into any positive sum of other elements in the cone, and the generator may play the
role of an ER, the cone is defined by C = cone

{
G𝑖 𝑗𝑘𝑙

r

}
. One observation from Eq. (2) is that the

UV state residing in the irrep of the symmetry group corresponds to the ER of the cone.
Now the primary goal is to examine the positions of seesaw models in the convex cone, and to

identify them with the help of dim-8 operators. We notice the UV states of heavy particles in three
types of seesaw models are in the irrep’s of 1, 3, 3 of SU(2)L gauge group, respectively, so they
naturally fit into this framework. Given all known symmetries in the theory, it is straightforward to
find all UV states that lead to dim-8 operators.

3. The UV States

To produce the Weinberg operator, the new physics should be coupled to lepton and Higgs
doublets at the same time. Therefore, we examine the minimal space of WC’s, that is, exploring
the positivity bounds on the amplitude involving 𝐻 or 𝐿. The dim-8 operators that can contribute
to such process are classified into three types in Table 1, in which 𝜎𝐼 (for 𝐼 = 1, 2, 3) stand for
the Pauli matrices and←→𝐷𝜈 ≡ 𝐷𝜇 −

←−−
𝐷𝜇 with 𝐷𝜇 being the covariant derivative in the SM has been

defined. For simplicity, we will consider only one lepton flavor.
The positivity bounds on the 𝐻𝐻𝐻𝐻-type and 𝐿𝐿𝐿𝐿-type operators are studied in Ref. [4]

and Ref. [5], respectively. In the present paper, we enlarge the space of WC’s by further combining
those two 𝐿𝐿𝐻𝐻-type operators O1 and O2 in Table 1. The key to construct a convex cone is to
use the CG coefficients to obtain the generator matrix in Eq. (3). We use the fact that both 𝐿 and
𝐻 belong to irrep 2 of the SU(2)L, then list all the CG coefficients given by the decomposition
2 × 2 = 1 + 3 and 2 × 2̄ = 1 + 3 as follows:

𝐶𝑎𝑏
1,𝑐 = 𝜖𝑎𝑏 , 𝐶𝑎𝑏

3,𝑐 =
(
𝜖𝜎𝐼

)𝑎𝑏
, �̄�𝑎𝑏

1,𝑐 = 𝛿𝑎𝑏 , �̄�𝑎𝑏
3,𝑐 =

(
𝜎𝐼

)𝑎
𝑏
, (4)

where 𝜖 ≡ i𝜎2 and the subscript “𝑐" is trivial for 1 but 𝑐 = 𝐼 for 3. The obtained generators can be
matched into the WC space, i.e. G𝑖 𝑗𝑘𝑙

r =
∑

𝑖 𝑐
𝑖
r𝑀

𝑖 𝑗𝑘𝑙
𝑖 for irrep r, which can be effectively labelled as

a vector ®𝑐r. Physically, the existence of generator G𝑖 𝑗𝑘𝑙
r in WC space corresponds to a heavy state

living in irrep r, and appearing as a propagator in the 𝑠 channel of process 𝑖 𝑗 → 𝑘𝑙. In this way, we
can write down all UV theories for the tree-level process of the 𝐿 and 𝐻 scattering, and summarize
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State Spin Charge Interaction Seesaw ER ®𝑐
𝐸 1/2 1−1 𝑔�̄�

(
𝐻†𝐿

)
"

1
2
(−1,−1, 0, 0, 0, 0, 0)

Σ1 1/2 3−1 𝑔Σ̄𝐼
1
(
𝐻†𝜎𝐼 𝐿

)
%

1
2
(−3, 1, 0, 0, 0, 0, 0)

𝑁 1/2 10 𝑔�̄�
(
𝐻T𝜖𝐿

)
Type-I "

1
2
(−1, 1, 0, 0, 0, 0, 0)

Σ 1/2 30 𝑔Σ̄𝐼
(
𝐻T𝜖𝜎𝐼 𝐿

)
Type-III %

1
2
(−3,−1, 0, 0, 0, 0, 0)

B1 1 11 𝑔B𝜇
1

[
(𝐻†𝜖 i←→𝐷𝜇𝐻

∗) + 𝑥
𝑀 (𝐿c𝜖 i←→𝐷𝜇𝐿)

]
%

1
2
(0, 0, 𝑥2,−𝑥2, 16, 0,−16)

Ξ1 0 31 𝑔Ξ𝐼
1
[
𝑀 (𝐻†𝜖𝜎𝐼𝐻∗) + 𝑥(𝐿c𝜖𝜎𝐼 𝐿)

]
Type-II %

1
2

(
0, 0,−3𝑥2,−𝑥2, 0, 16, 0

)
S 0 10S 𝑔𝑀S

(
𝐻†𝐻

)
" 2(0, 0, 0, 0, 0, 0, 1)

B 1 10A 𝑔B𝜇
[
𝐻†i←→𝐷𝜈𝐻 + 𝑥( �̄�𝛾𝜇𝐿)

]
%

1
2

(
0, 0,−𝑥2, 0,−4, 4, 0

)
Ξ 0 30S 𝑔𝑀Ξ𝐼 (𝐻†𝜎𝐼𝐻) % 2(0, 0, 0, 0, 2, 0,−1)
W 1 30A 𝑔W 𝐼 𝜇

[
(𝐻†𝜎𝐼 i←→𝐷𝜇𝐻) + 𝑥( �̄�𝛾𝜇𝜎𝐼 𝐿)

]
%

1
2

(
0, 0, 0,−𝑥2, 4, 4,−8

)
Table 2: All possible UV states in irreps that can be coupled to the lepton doublet 𝐿 and the Higgs doublet
𝐻, where the spin, the change of the SU(2)L ⊗ U(1)Y group [the subscripts “S" and “A" refer to symmetric
and antisymmetric representations] and the corresponding vectors in WC space are shown, where 𝑥 is an
arbitrary real number.

them in Table 2. For each heavy state, it’s spin, the quantum number r𝑌 under the SU(2)L ⊗U(1)Y
group, and it’s interactions with SM particles are given. Each UV state corresponds a unique vector
®𝑐 in the WC space. As a result, the convex hull of these vectors forms the positivity cone. Besides,
the ERs of the cone are also indicated in one column. In particular, we mark the seesaw models of
neutrino masses, which naturally appear in the cone.

For the forward scattering, a boson is not able to be the tree-level completion of the 𝐿𝐿𝐻𝐻-
type operators, while the fermion cannot mediate the 4-𝐻 or 4-𝐿 scattering. According to this
observation, the 𝐿𝐿𝐻𝐻 subspace should be separated from 𝐻𝐻𝐻𝐻 and 𝐿𝐿𝐿𝐿, as shown in
Table 2. This observation allows us to discuss the 𝐿𝐿𝐻𝐻 subspace without worrying about the
other WC’s in the next section. The 𝐿𝐿𝐿𝐿 + 𝐻𝐻𝐻𝐻 subspace is a 5D space, see Fig. 1(a).
However, if we restrict ourselves into the 𝐻𝐻𝐻𝐻 subspace corresponding to last three components
of ®𝑐, positivity bounds 𝐶6 ≥ 0, 𝐶5 + 𝐶6 ≥ 0, 𝐶5 + 𝐶6 + 𝐶7 ≥ 0 can be derived. The classical
results in Ref. [4] are reproduced. Similarly, we can reach the positivity bounds in Ref. [5] in the
𝐿𝐿𝐿𝐿 subspace, i.e. 𝐶3 + 𝐶4 ≤ 0, 𝐶4 ≤ 0. The above bounds are intact even in the enlarged
space, because the ERs of these two subspaces remain unchanged. In addition, the vector ®𝑐’s don’t
contain a component linear in 𝑥, and both 𝑐3 and 𝑐4 are multiplied by an arbitrary positive number
𝑥2. Therefore, subspaces of 𝐿𝐿𝐿𝐿 and 𝐻𝐻𝐻𝐻 can be discussed separately. However, the convex
geometric analysis of 𝐿𝐿𝐻𝐻 subspace will lead us to new bounds.

4. The 𝐿𝐿𝐻𝐻 Subspace

For the 𝐿𝐿𝐻𝐻 subspace, we focus on the first two components 𝑐1 and 𝑐2 of the ®𝑐 vector.
We draw the convex cone in Fig. 1(b). Each vector in Table 2 is marked with a colored point to
represent a UV state. The convex hull of these vectors forms a green positivity region. Only the
coefficients falling in the region of cone are allowed. The ER’s are the two edges of the cone,

4
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(a) 3D cross section of the 5D 𝐿𝐿𝐿𝐿 + 𝐻𝐻𝐻𝐻 subspace

Σ

N
Σ1

E

Type-I

Type-III

C0

-2.0 -1.5 -1.0 -0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

C1

C
2

(b) Convex cone in the 𝐿𝐿𝐻𝐻 subspace

Figure 1: The geometric structure of the convex cone, where different scenarios of UV completion are
represented by colored dots or lines. In Fig. 1(a), to show the 5D space in a 3D cross section, we have chosen
a particular projection direction. Fig. 1(b) is a 2D space, only the green region is allowed by positivity
bounds.

namely, ®𝑐 = (−1/2,−1/2) and (−1/2, 1/2). Extracting the normal vectors of the two edges will
provide us the following positivity bounds:

𝐶1 + 𝐶2 ≤ 0, 𝐶1 − 𝐶2 ≤ 0 . (5)

One direct application of positivity bound is to solve the inverse problem, i.e. to infer the
information about the UV physics. Especially, we notice that the type-I seesaw and type-III seesaw
appear in the 2D subspace 𝐿𝐿𝐻𝐻. The type-I seesaw appears as one of the edges of the cone, and
the type-III seesaw is inside the cone. This fact allows us to constrain the scales of the two seesaw
models by measuring 𝐶1 and 𝐶2. For example, one can probe the pair production of the Higgs
bosons via 𝑒+𝑒− → ℎℎ in future electron-positron colliders.

Suppose the global fit from the experiment provides us a Δ𝜒2 range for coefficients 𝐶1 and 𝐶2,
as shown by the point ®𝐶0 and a circle in Fig. 1(b). Eq. (3) tells us that ®𝐶0 can be interpreted as
a positive linear combination of irreps, namely, ®𝐶 =

∑
𝑖 𝜔𝑖 ®𝑐𝑖 with 𝑖 = 𝐸, 𝑁,Σ,Σ1. It is important

that the 𝜔𝑖 contains the information of the UV state that we want to know, because 𝜔𝑖 = 𝑔2
𝑖 /𝑀4

𝑖 .
Interestingly, with the knowledge of convex geometry, we can directly extract the upper bound on
𝜔𝑖 from ®𝐶0, thereby limit the coupling and mass of possible new physics [5]. The upper bound
on 𝜔𝑖 can be derived by finding the maximal value of 𝜆 such that the following vector breaks the
positivity condition

®𝐶 (𝜆) ≡ ®𝐶0 − 𝜆 ®𝑐𝑖 =
∑
𝑗≠𝑖

𝜔 𝑗 ®𝑐 𝑗 + (𝜔𝑖 − 𝜆) ®𝑐𝑖 . (6)

The value of 𝜆 can be stated as the maximum probability for the UV state 𝑖 to exist and explain the
experimental data. In particularly, due to the convex nature of the WC space, we first point out that
Eq. (6) can be identified as a conic optimization problem [6]. However, the existence of uncertainty
may obscure our extraction of upper bounds.

5
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5. Summary

We have examined three classes of dim-8 operators involving lepton and Higgs doublets, and
revealed the geometric structure of the convex cone of positivity bounds in the subspace of the
relevant WC’s at the tree level. This framework provides a novel way to distinguish the seesaw
models and their analogues. We study the subspace formed by two 𝐿𝐿𝐻𝐻-type operators in detail.
The type-I seesaw model resides on one of edges of the cone, and type-III seesaw model lives inside
the convex. We also explain how to extract the constraints on the UV theories once the experimental
measurements of the WC’s of dim-8 operators are available. These ideas are expected to be realized
in the future lepton colliders.
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