
P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter
shift rule using Qibo

Matteo Robbiati,𝑎,𝑏 Stavros Efthymiou,𝑐 Andrea Pasquale𝑎,𝑐 and Stefano
Carrazza𝑎,𝑏,𝑐,∗

𝑎TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano
Via Celoria 16, 20133, Milan, Italy.

𝑏CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.
𝑐Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
E-mail: matteo.robbiati@unimi.it, stavros.efthymiou@tii.ae,
andrea.pasquale@unimi.it, stefano.carrazza@cern.ch

In this proceedings we present quantum machine learning optimization experiments using stochas-
tic gradient descent with the parameter shift rule algorithm. We first describe the gradient eval-
uation algorithm and its optimization procedure implemented using the Qibo framework. After
numerically testing the implementation using quantum simulation on classical hardware, we per-
form successfully a full quantum hardware optimization exercise using a single superconducting
qubit chip controlled by Qibo. We show results for a quantum regression model by comparing
simulation to real hardware optimization.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:matteo.robbiati@unimi.it
mailto:stavros.efthymiou@tii.ae
mailto:andrea.pasquale@unimi.it
mailto:stefano.carrazza@cern.ch
https://pos.sissa.it/

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter shift rule using Qibo Stefano Carrazza

1. Introduction

In this work we use Qibo [1–3], a full-stack open-source framework for quantum simulation,
control and calibration, to perform a gradient-based optimization on a one qubit Quantum Process
Unit (QPU). Specifically, we implement an Adam optimizer [4], a stochastic gradient descent
method. Classical machine learning strategies make use of the Back-Propagation algorithm [5]
which requires to know the value of the target function in the middle of the propagation in order to
estimate the errors made in the predictions. On the other hand, this cannot be done when the model
is a Variational Quantum Circuit (VQC) because it would be necessary to perform a measurement
in

the middle of the propagation in order to know the value of the function, causing the system to
collapse to one of the accessible states and the consequent loss of the information accumulated up
to that moment.

VQC requires a method for evaluating gradients which should be deployable on the quantum
hardware available in the NISQ era [6]. A method for evaluating gradients of a quantum circuit was
proposed in 2018 and it is known as Parameter Shift Rule (PSR) [7, 8]. In the next sections we first
summarize the PSR algorithm and then we show results for a VQC regression optimization example
where all results presented in this manuscript have been obtained using the latest backends available
in Qibo (v0.1.8): qibojit [2], for simulation; qibolab1 for hardware control; and qibocal2 for
calibration, characterization and validation.

2. The Parameter Shift Rule

Let us consider a circuit U(θ) which, when applied to the initial state |0⟩, returns the final state
U(θ) |0⟩ = |𝑞 𝑓 ⟩. Let also 𝐵 be an observable we involve into the estimation of an output variable
𝑦3. Finally, let us consider the unitary operator

G = exp
[
−𝑖𝜇𝐺

]
, (1)

in which the variational parameter 𝜇 ∈ θ appears and which has at most two eigenvalues ±𝑟 . We
are interested in evaluating 𝜕𝜇 𝑓 , where 𝑓 is defined as follows:

𝑓 (θ) ≡ ⟨0|U†(θ) 𝐵U(θ) |0⟩ . (2)

It can be shown that, if 𝜇 appears in a single gate in the form (1), the target estimation can be written
as follows:

𝜕𝜇 𝑓 = 𝑟
[
𝑓 (𝜇+) − 𝑓 (𝜇−)

]
, (3)

with 𝜇± = 𝜇 ± 𝑠 and 𝑠 = 𝜋/4𝑟 . We use the case presented in [7], which requires the Hermitian G
picked from the set of rotation generators 1

2 {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧}. In this case we can use the remarkable
values 𝑠 = 𝜋/2 and 𝑟 = 1/2.

1https://github.com/qiboteam/qibolab

2https://github.com/qiboteam/qibocal

3In this case we use ⟨𝐵⟩ ≡ Prob(|0⟩) − Prob(|1⟩) as estimator of 𝑦.

2

https://github.com/qiboteam/qibolab
https://github.com/qiboteam/qibocal

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter shift rule using Qibo Stefano Carrazza

2.1 Evaluating gradients in a re-uploading strategy

The circuit we build up follows the idea presented in 2019 by Adrián Pérez-Salinas et al. [9],
also called as re-uploading strategy. It allows to use a sequence of parametrized gates applied to a
single qubit structure as model. Specifically, we summarize below the model used:

...

|0/1⟩
|0⟩ U1(θ1) U𝐿 (θ𝐿)

with an arbitrary number of layers U𝑘 (θ𝑘), defined as follows:

U𝑘 (θ𝑘) = 𝑅𝑌 (𝜃𝑘,1 · 𝑥 + 𝜃𝑘,2) 𝑅𝑍 (𝜃𝑘,3) .

Each layer involves two parametric rotation gates. In the first rotation, we impose that the angle
is constructed by a combination of two variational parameters and 𝑥, which is an input data. By
repeating this procedure multiple times, we obtain the effect of the data re-uploading strategy. As
explained in the previous section, the PSR can be used for evaluating the derivative of a circuit with
respect to a variational parameter which appears at the exponent in a gate like (1). Considering our
ansatz, when the feature is involved into the parameter’s definition, the PSR takes into account the
entire angle of rotation 𝜃′, which we calculate as 𝜃′ = 𝜃 · 𝑥. Thus, we need to correct the formula
dividing the shift parameter 𝑠 by 𝑥 when evaluating 𝑓 (±𝜇) and, once the two 𝑓 ’s are obtained, we
must recombine the values in the following way:

𝜕𝜇 𝑓 = 𝑟
[
𝑓 (𝜇+) − 𝑓 (𝜇−)

]
· 𝑥. (4)

The effect of this correction can be seen in Figure 1, where five coloured lines are shown, each of
which corresponds to a randomly selected value of 𝜃 with which we initialised a circuit consisting
of a rotation around the 𝑋 axis and for which the angle of rotation is calculated as 𝜃′ = 𝜃 · 𝑥. We
calculate the derivative with respect to 𝜃 of the term:

𝑦̂ =
(
⟨𝐵⟩𝑥 − 𝑐

)2
, (5)

where ⟨𝐵⟩𝑥 is obtained through the difference of the probabilities of occurrence of the states |0⟩ and
|1⟩ after 𝑁𝑠ℎ𝑜𝑡𝑠 executions of the circuit and 𝑐 is a constant for which we choose the arbitrary value
𝑐 = 0.2. Finally, we plotted the differences obtained by calculating the derivatives with the PSR
and the GradientTape() method of TensorFlow. We carry out this procedure with and without
the correction outlined above.

2.2 Loss function’s gradient

Our aim in this draft is to use PSR for gradient descent optimization. Since we choose a Mean
Squared Error loss function 𝐽𝑚𝑠𝑒, we need two different estimators for calculating its derivative
with respect to a 𝜇 as explained in [10]. In fact, once we have chosen an input variable 𝑥 𝑗 and
defined the associated circuit via re-uploading strategy, we can execute it 𝑁𝑠ℎ𝑜𝑡𝑠 times and calculate
the following contribution to the loss function which we call 𝐽 𝑗 . At this point the derivative of 𝐽 𝑗
with respect to 𝜇 becomes:

𝜕𝜇𝐽 𝑗 (θ) = 2
(
⟨𝐵⟩θ,𝑥 𝑗

− 𝑦

)
𝜕𝜇 ⟨𝐵⟩θ,𝑥 𝑗

, (6)

3

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter shift rule using Qibo Stefano Carrazza

1.0 0.5 0.0 0.5 1.0
Feature

0.03

0.02

0.01

0.00

0.01

0.02
tf

PS
R

Without correction

1.0 0.5 0.0 0.5 1.0
Feature

1.0

0.5

0.0

0.5

1.0

tf
PS

R

1e 16 With correction
Derivative difference evaluation from tf and PSR with features in the ansatz

Figure 1: Difference between the derivative with respect to 𝜃 evaluated with the TensorFlow module
GradientTape() called 𝜕𝑡 𝑓 and our PSR implementation called 𝜕𝑃𝑆𝑅. On the left, the value is calculated
without making any change to the first version of the PSR. On the right, we can see the effect of the
correction, which breaks down errors to the order of 10−16. Different colors correspond to different rotation’s
combinations.

where ⟨𝐵⟩θ,𝑥 𝑗
is the estimator of 𝑦, calculated as difference of the probabilities of occurrence of the

two fundamental states after performing the measurements on |𝑞 𝑓 ⟩ and 𝜕𝜇 ⟨𝐵⟩θ,𝑥 𝑗
can be evaluated

using the PSR. With the subscript 𝑥 𝑗 we are emphasising that the circuit under consideration has a
structure that depends explicitly on the variable 𝑥 𝑗 . This procedure must be carried out for each of
the 𝑝 variational parameters involved in the definition of the model. Of course, 𝑁𝑑𝑎𝑡𝑎 can be used
for the training, involving a computational cost equal to O(3𝑝𝑁𝑑𝑎𝑡𝑎𝑁𝑠ℎ𝑜𝑡𝑠) for each optimization
step. This aspect makes PSR a very computationally heavy technique. Nevertheless, it remains one
of the few possible solutions for successfully performing gradient descent on quantum hardware.
Before moving on to the description of the results obtained, let us summarise the algorithm we use
for evaluating the derivative of 𝐽𝑚𝑠𝑒 in the following block of pseudo-code.

Optimization with parameter-shift rule

1 initialize 𝜕𝐽𝑚𝑠𝑒 = ®0
2 for this_feature and this_label in range 𝑁𝑑𝑎𝑡𝑎:
3 define this_circuit(this_feature)
4 estimate ⟨𝐵⟩ with 𝑁𝑠ℎ𝑜𝑡𝑠 of this_circuit
5 for 𝜇 in range 𝑝:
6 with (3) evaluate 𝜕𝜇 ⟨𝐵⟩
7 use ⟨𝐵⟩ and (3) for calculate : this_dloss through (6)
8 𝜕𝜇𝐽𝑚𝑠𝑒 += this_dloss .

4

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter shift rule using Qibo Stefano Carrazza

𝑁data 𝑁shots 𝜂 𝑁epochs 𝜀𝐽

25 1024 0.1 100 5 · 10−3

Table 1: Hyper-parameters used to train the qubit.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

(y
+

10
)/

(y
tr

ue
+

10
)

Normalised measures with respect to the true law
Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 2: Results obtained by performing the optimization on the QPU and normalized with respect to the
true law. The choice of adding 𝑘 = 10 to each result is entirely arbitrary and serves to prevent the values
under consideration from diverging for 𝑥 tending to zero. The black line is the true law sin 2𝑥 and the black
points are the true images of the training set. Colors green and red respectively refers to our PSR and to
the CMA optimization. The dashed lines are the prediction’s sets purposed through simulated theoretical
models. The continuum lines and the confidence belts are drawn using one hundred predictions for each of
one hundred points equally distributed into the interval [−1, 1].

3. Deployment on quantum hardware

We can execute the code implementation presented above directly on the QPU by choosing the
appropriate Qibo backend. In this way we can perform the fit of 𝑦 = sin 2𝑥 with 𝑥 ∈ [−1, 1] directly
on quantum hardware. For this exercise we use the single qubit platform located in the Quantum
Research Centre (QRC) of the Technology Innovation Insitute (TII) in Abu Dhabi4. The selected
optimization hyper-parameters are reported in Table 1 where 𝜂 and 𝜀𝐽 are respectively the Adam’s
learning rate and a threshold value for 𝐽 we impose for stopping the optimization.

At first, we fix the initial parameters θ0 and the training set. At this point we perform the
optimization on the qubit using qibolab, stopping it once reached the 𝜀𝐽 value, obtaining the
θ𝑏𝑒𝑠𝑡 . We use the trained model to make statistics about the predictions; we pick one hundred
points equally distributed in the [−1, 1] range and for each point 𝑥 𝑗 we evaluate one hundred times
the prediction. Finally, we calculate mean and standard deviation from the mean for each 𝑗 . We use
them for drawing the predictions as continuous line and the confidence bands in Figure 2. Secondly,
we use θ𝑏𝑒𝑠𝑡 obtained above for simulating a quantum circuit on a classical hardware and for getting
the simulated theoretical predictions. This passage is crucial to highlight the difference between the

4https://www.tii.ae/quantum

5

https://www.tii.ae/quantum

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
0
6

A quantum analytical Adam descent through parameter shift rule using Qibo Stefano Carrazza

noisy quantum hardware and the classical simulation. The simulated predictions are presented as
dashed lines in Figure 2. To give consistency to the analysis, we compare the results obtained using
this optimizer with those obtained using a genetic algorithm (CMA-ES). We also decide to present
the results normalized with respect to the true law, which is represented as black line in Figure 2.
We first note that the simulated theoretical model is compatible with the measurements recorded
by the qubit, within the compatibility range we have defined. This is the case for both optimization
methods. Furthermore, looking at the theoretical law, we see that it falls within the confidence belt
relative to our training for a good part of the domain. The model proposed by the qubit, in this
range, is compatible with the target law: we have successfully performed a gradient descent on a
QPU with one qubit.

We conclude the discussion by highlighting that Qibo has achieved the level of completion
required to obtain a successful application through the open-source availability of modules and
backends for simulation, control and calibration.

Acknowledgements MR and SC are supported by CERN QTI program. SC is supported by the
European Research Council under the European Union’s Horizon 2020 research and innovation
Programme (grant agreement number 740006). The Qibo project is supported by QRC.

References

[1] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-
Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. Qibo: a framework for quantum
simulation with hardware acceleration. Quantum Science and Technology, 7(1):015018, dec 2021.

[2] Stavros Efthymiou, Marco Lazzarin, Andrea Pasquale, and Stefano Carrazza. Quantum simulation with
just-in-time compilation. Quantum, 6:814, sep 2022.

[3] Stefano Carrazza, Stavros Efthymiou, Marco Lazzarin, and Andrea Pasquale. An open-source modular
framework for quantum computing, 2022.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[5] Ronald J. Williams David E. Rumelhart, Geoffrey E. Hinton. Learning representations by back-
propagating errors. Nature, 1986.

[6] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, aug 2018.

[7] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Physical Review A, 98(3),
sep 2018.

[8] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic
gradients on quantum hardware. Physical Review A, 99(3), mar 2019.

[9] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. Data re-uploading for
a universal quantum classifier. Quantum, 4:226, feb 2020.

[10] Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K. Faehrmann, Barthé lémy
Meynard-Piganeau, and Jens Eisert. Stochastic gradient descent for hybrid quantum-classical opti-
mization. Quantum, 4:314, aug 2020.

6

	Introduction
	The Parameter Shift Rule
	Evaluating gradients in a re-uploading strategy
	Loss function's gradient

	Deployment on quantum hardware

