
P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

A
TL

-S
O

FT
-P

R
O

C
-2

02
2-

00
3

31
/1

0/
20

22

Shared I/O Developments for Run 3 in the ATLAS
Experiment

Alaettin Serhan Mete𝑎,∗ and Peter Van Gemmeren𝑎

𝑎Argonne National Laboratory†,
9700 S Cass Ave, Lemont, IL 60439, United States

E-mail: amete@anl.gov, gemmeren@anl.gov

The ATLAS experiment extensively uses multi-process (MP) parallelism to maximize data-
throughput especially in I/O intensive workflows, such as the production of Derived Analysis
Object Data (DAOD). In this mode, worker processes are spawned at the end of job initialization,
thereby sharing memory allocated thus far. Each worker then loops over a unique set of events
and produces its own output file, which in the original implementation needed to be merged at
a subsequent step that would be executed serially. In Run 2, SharedWriter was introduced to
perform this task on the fly, with an additional process merging data from the workers while the
job was running, eliminating the need for the extra merging step. Although this approach was very
successful, there was room for improvements, most notably in the event-throughput scaling as a
function of the number of workers. This was limited by the fact that the Run 2 version does all data
compression within the SharedWriter process. For Run 3, a new version of SharedWriter has
been written to address the limitations of the original implementation by moving compression of
data to the worker processes. This development also paves the way for using it in a hybrid mode of
multi-thread (MT) and MP workflows to maximize the I/O efficiency. In this talk, we will discuss
the latest developments in Shared I/O in the ATLAS experiment.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker
†Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, under

contract DE-AC02-06CH11357

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:amete@anl.gov
mailto:gemmeren@anl.gov
https://www.anl.gov/prime-contract
https://pos.sissa.it/

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

Shared I/O Developments for Run 3 in the ATLAS Experiment Alaettin Serhan Mete

Contents

1 Introduction 2

2 Shared I/O at ATLAS 2

3 Performance Benchmarks 3

4 Outlook and Conclusions 4

1. Introduction

Since the first days of data-taking, the ATLAS experiment [1] at CERN’s LHC has been using
Athena [2] as its main software framework. Athena is an open-source project that is based on
Gaudi [3]. It consists of about 4 (1.5) million lines of C++ (Python) code. The core framework and
the algorithms are written in C++, while Python is primarily used for job configuration/steering.

Originally designed to be executed serially on a single CPU core, Athena was extended to
support multi-process (MP) parallelism for Run-2. This mode of operation, called AthenaMP, is
still being used for a number of workflows, including the production of Derived Analysis Object
Data (DAOD).

The DAOD, a ROOT [4] file, is the primary data format that is used in physics analyses. In Run-2,
the physics analysis model was based on the idea of creating dedicated DAODs that target analyses
with similar signatures. Skimming (selecting events) and slimming (keeping only relevant variables)
were applied to minimize the overlap between different formats. In Run-3, ATLAS switched to a
new physics analysis model [5] where analyses use two common/inclusive DAOD formats, namely
DAOD_PHYS and DAOD_PHYSLITE. These formats include all reconstructed events and all common
variables. Therefore, producing them is more Input/Output (I/O) intensive, compared to producing
the derivation formats used in Run-2. This necessitated an upgrade to the I/O system of Athena that
is used in the AthenaMP workflows.

2. Shared I/O at ATLAS

As mentioned in the previous section, ATLAS has been using AthenaMP for a number of
workflows since the beginning of Run-2. This mode primarily takes advantage of Linux’s fork
and copy-on-write mechanisms. A number of so-called worker processes are forked from the main
process just after the job initialization. This allows the workers to share memory allocations that
happen until their creation, thanks to the copy-on-write technique. This significantly reduces the
memory usage of the job compared to running serial Athena jobs in parallel (as many as the
number of workers).

2

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

Shared I/O Developments for Run 3 in the ATLAS Experiment Alaettin Serhan Mete

In the original AthenaMP implementation, each worker processes a set of unique events and
writes out its own output files. These intermediate files are then merged in a subsequent step,
called the file merging, that runs on a single CPU core. However, this not only increases the overall
job execution time, hence reducing the event throughput, but also introduces inefficiencies in the
use of available hardware resources. In order to improve the situation, SharedWriter [6, 7] was
introduced during Run-2.
SharedWriter is a special worker that executes alongside the other workers. Instead of

processing events, it retrieves the output data objects from the workers and merges them on the
fly, eliminating the need to run the additional file merging step. Throughout Run-2, the orig-
inal implementation of the SharedWriter, now referred to as the legacy mode, is used in the
DAOD production jobs. It is estimated to save more than 30% of wall-time in these jobs. The legacy
SharedWriter serializes the data it retrieves from the workers, compresses them, and summarizes
the meta-data before saving them in the final product.

For Run-3, a number of improvements are made to the SharedWriter to increase its perfor-
mance. Instead of a single instance of SharedWriter performing everything, most of the CPU
intensive work is distributed across workers. This is done by adopting an approach that is similar
to ROOT’s ParallelFileMerger. This new approach takes advantage of socket programming.
SharedWriter acts as a server and accepts connections from the clients (the workers). Workers,
instead of sending their raw data to SharedWriter, serialize and compress their own data and
commit clusters of events into in-memory files, called TMemFiles. When it is time to flush the
data to disk, workers send their already serialized and compressed data to SharedWriter, and
SharedWriter simply merges them. At the end of the job, SharedWriter collects the meta-data
from the workers, summarizes and commits them into the output.

The downside of this approach compared to the legacy SharedWriter is the increased memory
usage. This stems from the fact that now each worker needs to have its own buffers for the
in-memory output files. However, it should be noted that this situation is very similar to the
original AthenaMP implementation where each worker used to handle its own output. Having
said that, compared to the legacy SharedWriter, the event-throughput gets a significant boost
thanks to the parallelization of the most CPU intensive operation in the I/O chain, namely the
compression. As far as the storage is concerned, the legacy SharedWriter has a slight edge
over the new SharedWriter. In order to keep the job’s memory usage at a reasonable level, the
output is periodically flushed to disk once every certain number of events, 𝑁AutoFlush. The buffers
are optimized when this disk-flush occurs for the first time, meaning the first cluster is always
unoptimized. In the legacy SharedWriter, the output has a single unoptimized cluster, whereas
in the new SharedWriter there is one unoptimized cluster per worker. Nonetheless, the practical
impact this has on the performance diminishes as the job processes more events than the frequency
at which the output is flushed to disk, i.e. 𝑁total ≫ 𝑁AutoFlush, which is typical for production jobs.

3. Performance Benchmarks

In order to assess the performance of the new SharedWriter, a number of benchmark tests are
performed. The tests consist of running a DAOD production job that produces one DAOD_PHYS and
one DAOD_PHYSLITE file, a so-called derivation train, with varying numbers of worker processes.

3

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

Shared I/O Developments for Run 3 in the ATLAS Experiment Alaettin Serhan Mete

In each iteration, the input is 25000 data reconstruction events. The tests are run on a dedicated
bare-metal machine that has two AMD EPYC 7302 16-Core Processors 3GHz and a total of 252
GB of memory. In order to disentangle the hardware effects as much as possible, the Simultaneous
Multi-Threading (SMT), as well as clock frequency boosting, are disabled.

Table 1 shows the scaling of the event-throughput and the memory usage. It should be noted
that the standard ATLAS production setup is using 8 cores (workers) per job. In this configuration,
the new SharedWriter improves the event-throughput by 70%, while increasing the memory usage
by 13%. However, the memory usage remains below the ATLAS distributed computing limit of 2
GB/core. For a configuration with more workers, the gains are even more dramatic.

Figure 1 shows the CPU utilization as a function of processing wall-time for the benchmark
DAOD production job in AthenaMP using 8 workers. The plot that corresponds to the legacy
SharedWriter clearly shows that a single SharedWriter compressing all the data cannot keep
up with the workers producing them. This results in over-committed CPU usage, i.e., 9 CPU
cores are used instead of 8 since the SharedWriter is 100% busy, and the job gets throttled.
However, in the new SharedWriter configuration, since the CPU-intensive compression is evenly
distributed across workers, SharedWriter does not need to work as much and does not throttle
the job. This can also be seen in the Figure 2, where events processed per worker (normalized to
the first worker) are shown. In the legacy configuration, SharedWriter can only serve a handful
of workers effectively, which lowers the efficiency of the additional workers, hence parallelization.
This behavior is fixed in the new SharedWriter. However, it should be noted that the legacy
SharedWriter performs just as well in a configuration where one produces a Run-2 DAOD format,
which is less I/O-intensive. Therefore, it would be fair to conclude that although the new derivation
formats require the extra boost they get from the new SharedWriter, the legacy SharedWriter can
still perform adequately in some scenarios, especially in less I/O-intensive jobs that are memory
limited. It is also worth mentioning that any SharedWriter, legacy or new, is better than plain
AthenaMP followed by a serial merge job.

Number of Cores Events/Wall-time [1/s] Memory/Core [GB]
Legacy New Δ [%] Legacy New Δ [%]

4 4.9 6.0 +21 1.94 2.10 +9
8 6.7 11.4 +70 1.67 1.88 +13
16 6.7 21.2 +216 1.45 1.81 +25

Table 1: The scaling of event-throughput and memory usage as a function of number of workers for the
benchmark DAOD production job.

4. Outlook and Conclusions

The changes made to the physics analysis model for Run-3 necessitated a number of improve-
ments to how I/O is handled in the DAOD production jobs in ATLAS. In order to improve the
performance, a new SharedWritermode is introduced, which solves a number of shortcomings of
the legacy implementation. At 8 processes, a typical production setup, the new SharedWriter is

4

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

Shared I/O Developments for Run 3 in the ATLAS Experiment Alaettin Serhan Mete

Benchmarks: Closer Look at the 8-worker Job

7

Le
ga

cy
 S

ha
re

dW
ri

te
r N

ew
 SharedW

riter

● Legacy SharedWriter limitations:
○ In Run 3 jobs are more I/O intensive due to new analysis model

■ Producing multiple inclusive formats (PHYS/LITE) in a single job
○ A single instance can’t keep up with large # of workers/formats
○ Effective # of parallel workers are reduced, hurting throughput

● New SharedWriter improvements:
○ Workers are practically independent: Ideal scaling
○ Work is equally distributed, optimizing throughput
○ No resource (CPU) usage overhead, helps the GRID

*”Legacy (Run 2)” shows a typical use case in Run 2

Figure 1: The CPU utilization as a function of processing wall-time for the benchmark DAOD production
job in AthenaMP using 8 workers. The plot on the left corresponds to the configuration using the legacy
SharedWriter, while the one on the right corresponds to the configuration using the new SharedWriter.
The plots are obtained using prmon [8].

0 1 2 3 4 5 6 7
Worker

0.2

0.4

0.6

0.8

1.0

Ev
en

ts
 P

ro
ce

ss
ed

 [a
rb

itr
ar

y
un

it]

New (Run 3)
Legacy (Run 3)
Legacy (Run 2)

Figure 2: The number of events processed per worker (normalized to the first worker) for the benchmark
DAOD production job in AthenaMP using 8 workers. The orange curve corresponds to the configuration
using the legacy SharedWriter, while the blue curve to the configuration using the new SharedWriter.
For comparison, the green curve shows the result for producing a Run-2 type DAOD file with the legacy
SharedWriter.

found to improve the event-throughput by as much as 70% in a scenario where the job produces a
so-called derivation train containing DAOD_PHYS and DAOD_PHYSLITE formats.

Beyond just DAOD production, SharedWriter can also help improve the performance of
production jobs that are I/O-bound. For Run-3, ATLAS upgraded the Athena framework to
support multi-threading, namely AthenaMT. ATLAS is in a unique position, where the benefits of
both the MT and the MP workflows can be married in a hybrid mode, called AthenaMP/MT. This
mode could be a viable option that both optimizes the memory usage as well as having optimal
I/O handling thanks to SharedWriter. In that regard, the benefits of SharedWriter potentially
go beyond just AthenaMP and these new modes will be investigated in the future for various other
workflows.

5

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
1
9

Shared I/O Developments for Run 3 in the ATLAS Experiment Alaettin Serhan Mete

References

[1] The ATLAS Collaboration. (2008). The ATLAS Experiment at the CERN Large Hadron
Collider. JINST, 3, S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

[2] The ATLAS Collaboration. (2021). Athena. https://doi.org/10.5281/zenodo.4772550

[3] Barrand, G. et al. (2001). GAUDI – A software architecture and framework for building HEP
data processing applications. Comp. Phys. Comm., 140, 45-55. https://doi.org/10.1016/S0010-
4655(01)00254-5

[4] Brun, R. & Rademakers, F. (1997). ROOT - An Object Oriented Data Analysis Framework.
Nucl. Inst. & Meth. in Phys. Res., A 389, 81-86. https://doi.org/10.5281/zenodo.848818

[5] Elmsheuser, J. et al. (2020). Evolution of the ATLAS analysis model for Run-3 and prospects
for HL-LHC. EPJ Web Conf. 245 06014. https://doi.org/10.1051/epjconf/202024506014

[6] van Gemmeren, P. et al. (2012). I/O Strategies for Multicore Processing in ATLAS. J. Phys.:
Conf. Ser. 396 022054. https://doi.org/10.1088/1742-6596/396/2/022054

[7] van Gemmeren, P. et al. (2017). Shared I/O components for the ATLAS multi-processing
framework. https://cds.cern.ch/record/2278398

[8] Stewart, G. A. & Mete, A. S. (2018). PrMon. https://doi.org/10.5281/zenodo.2554202

6

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.5281/zenodo.4772550
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.5281/zenodo.848818
https://doi.org/10.1051/epjconf/202024506014
https://doi.org/10.1088/1742-6596/396/2/022054
https://cds.cern.ch/record/2278398
https://doi.org/10.5281/zenodo.2554202

	Introduction
	Shared I/O at ATLAS
	Performance Benchmarks
	Outlook and Conclusions

