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In recent years, compute performances of GPUs (Graphics Processing Units) dramatically in-
creased, especially in comparison to those of CPUs (Central Processing Units). GPUs are nowa-
days the hardware of choice for scientific applications involving massive parallel operations,
such as deep learning (DL) and Artificial Intelligence (AI) workflows. Large-scale computing
infrastructures such as on-premises data centers, HPC (High Performance Computing) centers,
and public or private clouds offer high performance GPUs to researchers. The programming
paradigms for GPUs significantly vary according to the GPU model and vendor, often posing a
barrier to their use in scientific applications. In addition, powerful GPUs are hardly saturated
by typical computing applications. GPU partitioning may be the key to exploit GPU computing
power in an efficient and affordable manner. Multiple vendors proposed custom solutions to allow
for GPU partitioning, often with poor portability across different platforms and OSs (Operating
Systems).

OpenForBC (Open For Better Computing) is an open source software framework that allows for
effortless and unified partitioning of GPUs from different vendors in Linux KVM virtualized
environments. OpenForBC supports dynamic partitioning for various configurations of the GPU,
which can be used to optimize the utilization of GPU kernels from different users or different
applications. For example training complex DL models may require a full GPU, but inference may
only need a fraction of it, leaving free resources for multiple cloned instances or other tasks. In
this contribution we describe the most common GPU partitioning options available on the market,
discuss the implementation of the OpenForBC interface, and show the results of benchmark tests

in typical use case scenarios.
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1. Introduction

High-end GPUs, such as those based on Nvidia Ampere or Hopper technologies, AMD Instinct
and Intel Ponte Vecchio, are becoming the de-facto standard for High-Performance Computing
(HPC) and Artificial Intelligence (AI) applications. Computing kernels for General-Purpose GPUs
(GPGPUs) are rarely able to fully exploit powerful GPUs with large amounts of memory. Their
optimization is often not trivial and time consuming. Such optimisation might need to be tailored
to a specific GPU architecture, with negative effects on code portability. On the other hand data
centers offering GPUs to their users have the need to maximise their usage. To overcome such
issues GPU vendors offer the possibility to partition high-end GPUs, i.e. it is possible to allocate
fractions of the GPU computing power and memory to different processes and users. Executing
multiple copies of a poorly optimized computing kernel on a partitionable GPU can potentially lead
to an improved efficiency, reducing the performances cost.

GPU partitioning technologies vary across different vendors, and sometimes across different
models. For example Nvidia offers two partitioning modes in virtualised environments: virtual
GPU (vGPU) or multi-instance GPU (MIG) [1]. vGPU is an older standard based on time-sharing
the compute capabilities of the GPU among different partitions. The GPU memory is statically
partitioned. In a given time slot, the Virtual Machine (VM) with the attached vGPU partition has
full control over the GPU computing resources, and access to only a fraction of the GPU memory. In
MIG partitioning mode, both compute and memory resources of the GPU are statically partitioned.
In this mode, the VM may only use a fraction of the GPU cores, even if the remaining ones are
idle. MIG-partitioned GPUs can be used in bare metal or in containers, whereas vGPU instances
can only be used in VMs. Newer architectures such as Ampere support both modes, while on older
models such as Tesla only vGPU is available. The specificities of each technology and the poor
support of GPU partitioning in Linux Kernel-based VM (KVM) environments often pose a severe
barrier to the wide adoption of such solutions, even when the advantages of using partitioned GPUs
are obvious.

While different implementations of GPU partitioning modes appear significantly different, they
are all based on the same underlying standard, Single Root Input/Output Virtualization (SR-IOV)
[2]. SR-IOV is a protocol developed by the PCI (Peripheral Component Interconnect) Express
Consortium that allows different VMs to share a single PCI Express hardware interface. In Section
2, we describe the development of a software layer, the OpenForBC (Open For Better Computing)
framework, offering a common interface to manage different GPU partitioning technologies in the
open-source Linux KVM environment. By building on top of the SR-IOV standard, we ensure
support for current partitioning solutions, and possibly future ones. To test the performances of
GPUs partitioned with different modes and schemas through OpenForBC, we developed a modular
benchmarking framework, OpenForBC Benchmark (see Section 3). Results of several benchmarks
based on various Machine Learning (ML) models are shown and discussed in Section 4.

2. The OpenForBC framework

OpenForBC [3] is an open source software framework that provides a common interface to
setup and use GPU partitions in Linux KVM hosts. OpenForBC is currently under development
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and supports Nvidia GPUs compatible with both MIG and vGPU partitioning modes. OpenForBC
requires that the Nvidia host driver and license are installed and available on the host system.

The OpenForBC framework is written in Python and offers its functionalities through a REST
API. OpenForBC features a Command Line Interface (CLI) to execute a set of commands:

o KeJelSiNTolaoTels) s DAMNERM: | ists the available physical GPUs that support a partitioning tech-
nology.

o KoJoSiNTolaolels) s bARRY I [ ists the available virtual GPU profiles.
o [JelSiNTola o Tl Einm AR o) Ma-E N Creates one of the available virtual GPU profiles.
o QEiETdaJJaEiad RSN sIAN: Gets the definition of the partition using the libvirt Virtu-

alization API [4] XML standard. These are the information needed to instantiate a VM or
container attached to the virtual GPU instance.

Ll openforbc partition destroy HEBENIGARIEEEivitalol

The OpenforBC framework has been tested with Nvidia cards A100 and T4, using both MIG
and vGPU modes. It should be noted that graphical applications are not supported by Nvidia when
the GPU is partitioned with MIG.

3. The OpenForBC Benchmark framework

To test the advantages of GPU partitioning, a set of benchmarks on promising use cases
is needed. Due to the lack of a suitable option in the open-source market, we developed a
benchmarking framework, OpenForBC Benchmark [5]. OpenForBC Benchmark is a modular
benchmarking suite, written in Python, that allows to define set of benchmark runs based on
common benchmark definitions, execute the benchmarks, and log the results. Benchmark execution
can be easily steered via CLI. OpenForBC Benchmark includes our custom benchmarks, currently
based on matrix multiplication and ML model training and inferences, and is compatible with the
well-known Phoronix [6] and Blender [7] benchmarks. Further benchmarks can be easily added by
providing the benchmark executable and its configuration parameters (for example the number of
training epochs or size of the matrices) as a JSON file.

4. Results

GPU partitioning is a promising way to efficiently use high-end GPUs for a variety of workflows.
For example training complex ML models is a typically computing-intensive workload, and may
well occupy all GPU cores. Evaluating inference for the same model is usually much less demanding.
OpenForBC Benchmark has been used to execute the following ML benchmarks in both training
and inference mode:

* Teacher-Student: this benchmark implements a fully connected neural network with one
hidden layer using the Teacher-student learning technique [8] in which a student model has to
learn a dataset of input-output where the output distribution function is defined by a teacher
network.
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* CIFAR: this benchmark implements a convolutional neural network with two convolutional
layers and one fully connected layer over the CIFAR10 dataset. CIFAR10 is a well known
image recognition dataset [9].

e MNIST: this benchmark implements a fully connected neural network with three hidden layer
and performs training and inference over the well-known MNIST [10] dataset of handwritten
digits.

Inference is calculated on one sample at the time, i.e. with batch size equal to one. Training
has been done using default parameters for the number of epochs, as reported in the OpenForBC
Benchmark documentation [11].

In Figures 1 and 2, we present benchmark results of executing training and inference of the
above mentioned ML models on a Nvidia A100 with 40 GB memory. Such graphical adapter can
be divided to create up to seven partitions. We compare the throughput (defined as the number of
processed samples per seconds) for various partitioning possibilities:

» 7 x 1/7: the GPU is divided into seven partitions. These are the smallest partitions that can
be created on a A100 card;

3 X 2/7: the GPU is divided into three partitions;

2 x 3/7: the GPU is divided into two partitions;

1x4/7: the GPU is divided into one partition which has more than 50% of the GPU resources.
Only one such partition can be created;

1 x 7/7: the GPU is divided into one partition only. This is the largest partition that can be
created on a A100 card;

* whole GPU: the GPU is used as a whole, without partitioning.

The fractions indicate roughly the ratio of computing cores associated to each partition with
respect to the whole GPU. All partitions have been loaded with the same computation.

Teacher-Student inference total Teacher-Student training total
samples per second samples per second
™17 x2/7 x3/7 x4/7 w777 whole GPU 17 ™ 2/7 2 3/7 1x 4/7 w7/7 whole GPU

Figure 1: Throughput, defined as number of processed events per second, for training (left) and inference
(right) on the Teacher-Student ML model, for several partitioning configurations. See text for details.

A few general remarks can be made. None of the tested models can fully saturate the computing
resources of the GPU. This represents the ideal testing ground for GPU partitioning. The largest
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CIFAR MNIST
training and inference total training and inference total
samples per second samples per second

x1/7 x2/7 2x3/7 1x4/7 x7/7 x2/7 2x3/7 1x4/7 1x7/7

whole GPU x1/7 whole GPU

Figure 2: Throughput, defined as number of processed events per second, for training and inference on the
CIFAR (left) and MNIST (right) ML models, for several partitioning configurations. See text for details.

speed-up (defined as increase in throughput) with respect to the unpartitioned GPU is generally
reached by the partitioning schema involving seven small partitions. The speed-up varies from 105%
in the case of Teacher-Student model training to 655% for Teacher Student model inference. For the
CIFAR model the speedup during training and inference is similar, 461% and 428% respectively.
For the MNIST model we measured a speedup of 305% in training and 409% in inference.

The overhead of GPU partitioning is negligible, as can be seen by comparing the throughput
of the 1x7/7 partition with that of the whole GPU. The GPU power consumption merely rises from
130 W when using the unpartitioned GPU to 225 W when executing computations in the 7x1/7
partitioning mode. To summarise, these first tests clearly show the advantage of partitioning the
GPU for workflows that cannot saturate the GPU. In the future we plan to expand the number of
tested use cases, to probe the boundary when GPU partitioning may not be as efficient.

5. Conclusion

GPU partitioning may be the key to use efficiently high-end GPUs such as those found in modern
data centers. GPU partitioning technologies significantly vary across different vendors, and even
across different GPU models from the same vendor. We developed OpenForBC, a framework that
offers a uniform interface to create and manage GPU partitions. This development paves the way
for the wide adoption of GPU partitioning for both research and industry applications.

To test the advantages of GPU partitioning under various configurations we measured the
performances of executing training and inference of several ML models, and found a significant
speedup when using the fully partitioned GPU. The benchmarks were executed using OpenForBC
Benchmark, a modular and open-source benchmarking framework developed in the context of this
project.

OpenForBC currently supports Nvidia GPUs in MIG and vGPU partitioning modes. Future
developments will include adding support for AMD and Intel GPUs, and further expansion of the
benchmark tests.
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