PROCEEDINGS

OF SCIENCE

Applying and optimizing the Exa.TrkX Pipeline on the
OpenDataDetector with ACTS

Paolo Calafiura,” Lukas Heinrich,” Benjamin Huth,** Xiangyang Ju,* Alina
Lazar,? Daniel Murnane,” Andreas Salzburger® and Tilo Wettig®

“Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA

b Technische Universitit Miinchen, Arcisstrafie 21, 80333 Miinchen, Germany

¢ Universitdt Regensburg, Universitdtsstrafie 31, 93053 Regensburg, Germany

dYoungstown State University, One University Plaza, Youngstown, OH 44555, USA

¢CERN, Espl. des Particules 1, 1211 Meyrin, Switzerland

E-mail: benjamin.huth@ur.de

Machine learning is a promising field to augment and potentially replace part of the event recon-
struction of high-energy physics experiments. This is partly due to the fact that many machine-
learning algorithms offer relatively easy portability to heterogeneous hardware and thus could
play an important role in controlling the computing budget of future experiments. In addition, the
capability of machine-learning-based approaches to tackle nonlinear problems can improve perfor-
mance. Particularly, the track reconstruction problem has been addressed in the past with several
machine-learning-based attempts, largely facilitated by the two highly resonant machine-learning
challenges (TrackML). The Exa.TrkX project has developed a track-finding pipeline based on
graph neural networks that has shown good performance when applied to the TrackML detector.
We present the technical integration of the Exa.TrkX pipeline into the framework of the ACTS
(A Common Tracking Software) project. We further present our efforts to apply the pipeline to
the OpenDataDetector, a model of a more realistic detector that supersedes the TrackML detector.
The tracking performance in this setup is compared to that of the ACTS standard track finder, the
Combinatorial Kalman Filter.

41st International Conference on High Energy Physics - ICHEP2022
6-13 July, 2022

Bologna, Italy

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:benjamin.huth@ur.de
https://pos.sissa.it/

Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS Benjamin Huth

1. Introduction

In order to cope with the challenges of the upcoming high-luminosity upgrade of the LHC
(HL-LHC), much research is being done on new track-reconstruction algorithms based on novel
methods like machine learning. To help with its transition from development to physics testing
and optimization, the Exa.TrkX pipeline [1] was implemented in the tracking-software package
ACTS [2] and used in a realistic virtual detector, the OpenDataDetector (ODD) [3]

2. The Exa.TrkX pipeline

The Exa.TrkX project has developed a multi-step machine-learning-based algorithm for track
finding. It builds a graph whose nodes are hits in the 3D space and uses a graph neural network
(GNN) to label the edges such that connected hits correspond to a track:

1. Graph building: A fully-connected graph is not manageable for O(100K) nodes. Therefore, a
metric-learning approach in combination with a fixed-radius nearest-neighbor search is used
to create the initial graph.

2. Graph filtering: Because the initial graph is still too large to be processed by a GNN on the
available hardware, the graph size is further reduced by an edge-classifying dense network.

3. Edge classification: The final edge scoring is done by a GNN. There exist several GNN
architectures. For this work, an Interaction GNN was used.

4. Track building: As a final step, a weakly-connected-components algorithm forms track
candidates from the edge scores.

3. ACTS and the OpenDataDetector

ACTS is a software toolkit that aims at providing both production-ready implementations of
standard tracking algorithms like the Kalman Filter (KF) or the Combinatorial Kalman Filter (CKF)
and being a highly flexible platform for R&D. ACTS therefore allows for assembling tracking chains
from stable and tested standard algorithms and experimental components like the Exa.TrkX pipeline
and also provides standard tools to evaluate and compare tracking performance.

The OpenDataDetector is a realistic model of a cylindrical tracking detector. Originating from
the detector used for the TrackML challenge, it was enhanced by an increasingly realistic description
of detector components and material. However, a realistic geometric digitization model is not yet
available for the ODD. Therefore we rely on a more straightforward approach: A 2D measurement

detector part | distance from beam pipe Oy Ty
pixel r <20cm 10.0pm | 10.0 pm
short strip 20cm <r <70cm 45.0pm | 1.2 mm
long strip r > 70cm 60.0pm | 3.6 mm

Table 1: The uncertainties assumed for the measurements in the different regions of the OpenDataDetector.

Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS Benjamin Huth

Training Efficiency Training Purity
LR Jp— smeared hits

0.991 truth hits

0.98 0.81

0.974
> 0.6
2 B
() =1
»g 0.96 E_
& 4
® 0951 0.4

0.94 021

0.931 —— smeared hits

0.02 truth hits 0.01

’ graph building graph filtering GNN graph building graph filtering GNN

(a) Efficiency for true and smeared hits in the three steps. (b) Purity for true and smeared hits in the three steps.

Figure 1: Efficiency and purity of the training phases of steps 1-3 (see Sec. 2) for one selected event.

Metrics for smeared training Metrics for truth training
1.2 1.2
1.01 eff: 0.90 eff: 0.98 eff: 0.90 1.04 eff: 0.97 eff: 0.98 eff: 0.99
pur: 0.85 pur: 0.94 pur: 0.88 pur: 0.99 pur: 0.98 pur: 0.96
0.8 0.8
Eos Eoe
[
eff: 0.80 eff: 0.95 eff: 0.81 eff: 0.98 eff: 0.99 eff: 0.99
0.4 pur: 0.72 pur: 0.87 pur: 0.73 0.4 pur: 0.98 pur: 0.98 pur: 0.97
0.2 0.2
eff: 0.99 eff: 0.98 eff: 0.98 eff: 0.99 eff: 0.99 eff: 0.98
pur: 0.98 pur:0.98 pur: 0.97 pur: 0.98 pur:0.98 pur: 0.98
0.0 0.0
3 2 0 1 2 3 3 2 1 0 1 2 3
z [m] z [m]
(a) Training with smeared hits. (b) Training with true hits.

Figure 2: Efficiency and purity in different detector regions after the GNN step for one selected event.

on a detector module is smeared with a two-dimensional Gaussian distribution N (0, o), where the
covariance matrix o reflects the properties of the module (see Tab. 1).

To use the CKF as a benchmark for track finding performance, we tuned a few critical parameters
to the ODD using a hyperparameter optimization framework [4]. This did not lead to cutting-edge
performance but provided a baseline for track-finding performance.

4. Training the Pipeline

The Exa.TrkX training pipeline is implemented using pyforch [5]. The training code was forked
from Exa.TrkX and modified to be compatible with ACTS. It can be found in [6].

The training data consist of 1000 events generated using Pythia8 [7] and simulated with the
ACTS fast simulation, emulating the conditions foreseen at HL-LHC. 950 events are used for
training and 25 each for testing and validation. Hyperparameters and scripts that steer the training
can be found in [8]. An NVIDIA A100 GPU with 40 GB of memory was used for the training.

Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS Benjamin Huth

GPU memory consumption for 10 events

Time comparison
B Exa.TrkX 3.5
25 m Parameter Estimation
: EEm Kalman Filter g 3.0
B Seeding ‘; 251
2.0 I Combinatorial Kalman Filter 2™
1%}
=
2.0
Z
£
Z 1.5
g
2 1.04
Q
0.51
0.0 —— Exa.TrkX full chain
0 5 10 15 20 25
Exa.TrkX CKF Truth CKF Truth Tracking time [s]
(a) Average runtime of the different full chains. (b) GPU memory usage profiled with nvidia-smi.

Figure 3: Computational performance for ten events with particle selection applied.

The pipeline was trained twice with different input data: Once with the hits given directly by
the simulation (referred to as true hits later on) and once with the hits after applying the simplified
digitization model described in Sec. 3 (referred to as smeared hits later on). A training run takes
about 18 h and uses up to 90% of the available GPU memory.

To qualify the performance of the training, we define two edge-based metrics:

true edges in graph # true edges in graph

efficiency = purity =

all true edges # all edges in graph

As shown in Fig. 1, we obtain about 99% efficiency and purity with the true hit data but lower
performance with the more realistic smeared ones. Especially the efficiency of the GNN step drops
significantly. As shown in Fig. 2, this is mainly caused by the outer parts of the detector with lower

measurement resolution. We are currently investigating how to improve the performance here.

5. Inference within ACTS

For the inference, a selection has been applied to cover particles of interest: we only consider
particles with energy above 500 MeV, pseudo rapidity |n| < 3, and a transverse distance from the
beam pipe p < 2 mm.

The Exa. TrkX pipeline in ACTS is implemented with the forchscript backend with the help
of FRNN [9] and Boost.Graph [10]. The inference was run on the same system as the training
(GPU: NVIDIA A100, CPU: AMD EPYC 7662). There is also a standalone implementation of the
Exa.TrkX pipeline in C++ available [11].

5.1 Computing performance
We have assembled four different full chains to compare their performance characteristics:
1. GNN-based tracking chain (Exa.TrkX + parameter estimation + KF).

2. State-of-the-art full chain (Seeding + CKF).
3. Truth-seeded CKF, a best-case scenario for the CKF.

Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS Benjamin Huth

Reconstruction efficiencies for Exa.TrkX Reconstruction efficiencies for the CKF

-
=
-
=3

PSS N AT S
Ry \\ P

=3

—— smeared hits (90%)
1 --- smeared hits (50%)
true hits (90%)
true hits (50%)

<
©
|
<
o

<
=)
|
o
=)

N
IS
\
N
IS

—— smeared hits (90%)
1 --- smeared hits (50%)
true hits (90%)
true hits (50%)

e
N}
e
[N}

fraction of particles reconstructed
fraction of particles reconstructed

<
o

o
<}

3 2 1 0 1 2 3 -3 22 -1 0 1 2 3
n n

(a) Efficiencies of the Exa.TrkX-based full chain. (b) Efficiencies of the CKF-based full chain.

Figure 4: Comparison of the reconstruction efficiencies of the Exa.TrkX pipeline and the CKF for ten events
with particle selection applied. This is shown for two different matching criteria: one that requires 90% of a
track’s hits to have been found correctly to count as reconstructed, and one only requiring 50%.

4. General baseline with Truth track finding + KF.

The runtime of these four chains is summarized in Fig. 3a. Note that the Exa.TrkX pipeline can
exploit a whole GPU, whereas all other modules run single-threaded on a CPU. On the other hand,
the CPU algorithms are extensively optimized for performance, whereas optimization efforts for the
Exa.TrkX pipeline have just started. A final performance evaluation must also include monetary
and energy consumption aspects, however, a similar per-event timing is already promising.

There are two contributions to the observed GPU memory consumption (see Fig. 3b): The
baseline memory usage of the torchscript runtime (roughly 2 GB) and the memory usage of the
algorithm itself. It is expected that optimizations of the models and the ACTS implementation of
the pipeline can reduce the memory footprint.

5.2 Track finding performance

The reconstruction efficiency (the fraction of tracks that was reconstructed by a track-finding
algorithm) for both the truth-based and the smeared models are shown in Fig. 4a. The performance
in the more realistic scenario with the smeared input and the respective models is significantly
lower than in the truth-based case, which reaches almost optimal efficiency. This is in line with the
observed metrics of the training (see Fig. 1) and indicates that the Exa.TrkX pipeline performance is
sensitive to the detector resolution. Related work has shown that better performance can be reached
in similar cases [12]. Therefore, we assume these issues can be solved by further optimization.

Even though the CKF does not show state-of-the-art performance in our setup, its performance
does not depend strongly on the input type (see Fig. 4b). This is expected because the CKF performs
a least-square estimate and thus can take into account the measurement uncertainty.

6. Conclusion

We successfully trained the Exa.TrkX pipeline and were able to run a full track-reconstruction
chain within ACTS consisting of both traditional algorithms like the KF and novel modules based

Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS Benjamin Huth

on GNNs. This chain can reach good track-reconstruction efficiency in general, but we observe a
performance decrease in detector regions with low measurement resolution that is currently under
investigation. In addition, our setup still uses several simplified components, especially with respect
to the simulation and the digitization model. We plan to improve upon these aspects in future work.

Note that we only investigated one realization of a GNN-based tracking chain. There are many
developments in this field regarding alternative graph-building approaches, different GNN archi-
tectures, track-building methods, or even hybrid algorithms combining, e.g., classical algorithms
like the CKF and modern GNN-based solutions. Therefore, this work can also serve as a baseline
for future research on this topic within ACTS.

Acknowledgment

LH is supported by the Excellence Cluster ORIGINS, funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-
2094-390783311. GPU resources were made available by the ORIGINS Data Science Lab (ODSL).

This research was partly supported by the U.S. Department of Energy’s Office of Science,
Office of High Energy Physics, under Contract No. DE-AC02-05CH11231 (CompHEP Exa.TrkX);
and by the National Science Foundation under Cooperative Agreement OAC-1836650.

References

[1] X. Ju et al., Performance of a geometric deep learning pipeline for HL-LHC particle
tracking, The European Physical Journal C 81 (2021) 876.

[2] X. Aietal., A Common Tracking Software Project, Computing and Software for Big Science
6 (2022) 8.

[3] C. Allaire et al., OpenDataDetector, Zenodo (2022) .

[4] R. Bala et al., Exploration of different parameter optimization algorithms within the context
of ACTS software framework, 2022.

[5] A. Paszke et al., Pytorch: An imperative style, high-performance deep learning library,
arXiv:2203.11601.

[6] B. Huth, Forked Exa.TrkX repository with the modified training pipeline, 2022.

[7] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3,
arXiv:2203.11601.

[8] B. Huth, Training and inference scripts, 2022.
[9] L. Xue, FRNN library, 2022.
[10] J. Siek et al., Boost.Graph library, 2001.
[11] X. Ju, Standalone C++ implementation of the Exa.TrkX pipeline, 2022.

[12] ATLAS collaboration, GNN tracking performance for ATLAS ITk simulated data, 2022.

https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1007/s41781-021-00078-8
https://doi.org/10.1007/s41781-021-00078-8
https://doi.org/10.5281/zenodo.6445359
https://indico.cern.ch/event/1103637/contributions/4821875/
https://indico.cern.ch/event/1103637/contributions/4821875/
https://arxiv.org/abs/arXiv:2203.11601
https://github.com/benjaminhuth/Tracking-ML-Exa.TrkX
https://arxiv.org/abs/arXiv:2203.11601
https://github.com/benjaminhuth/ichep2022-exatrkx
https://github.com/lxxue/FRNN
https://www.boost.org/libs/graph
https://github.com/exatrkx/exatrxk-cpp-ctd2022/commits/main/inf-cpp
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

	Introduction
	The Exa.TrkX pipeline
	ACTS and the OpenDataDetector
	Training the Pipeline
	Inference within ACTS
	Computing performance
	Track finding performance

	Conclusion
	References

