PoS - Proceedings of Science
Volume 414 - 41st International Conference on High Energy physics (ICHEP2022) - Computing and Data Handling
Generative Models for Fast Simulation of Electromagnetic and Hadronic Showers in Highly Granular Calorimeters
P. McKeown*, S. Bieringer, E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, W. Korcari, A. Korol, K. Krüger, L. Rustige and I. Shekhzadeh
Full text: pdf
Pre-published on: November 28, 2022
Published on:
Abstract
While simulation is a crucial cornerstone of modern high energy physics, it places a heavy burden
on the available computing resources. These computing pressures are expected to become a
major bottleneck for the upcoming high luminosity phase of the LHC and for future colliders,
motivating a concerted effort to develop computationally efficient solutions. Methods based on
generative machine learning models hold promise to alleviate the computational strain produced
by simulation, while providing the physical accuracy required of a surrogate simulator.
This contribution provides an overview of a growing body of work focused on simulating showers in
highly granular calorimeters, which is making significant strides towards realising fast simulation
tools based on deep generative models. Progress on the simulation of both electromagnetic
and hadronic showers will be reported, with a focus on the high degree of physical fidelity
achieved. Additional steps taken to address the challenges faced when broadening the scope of
these simulators, such as those posed by multi-parameter conditioning, will also be discussed.
DOI: https://doi.org/10.22323/1.414.0236
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.