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Quantum jet clustering with LHC simulated data
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We study the case where quantum computing algorithms could improve jet clustering by
considering two new quantum algorithms that might speed up classical jet clustering algorithms.
The first one is a quantum subroutine to compute a Minkowski-based distance between two data
points, while the second one consists of a quantum circuit to track the rough maximum into a list
of unsorted data. When one or both algorithms are implemented in classical versions of well-
known clustering algorithms (K-means, Affinity Propagation and 𝑘𝑇 -jet) we obtain efficiencies
comparable to those of their classical counterparts. Furthermore, in the first two algorithms an
exponential speed up in dimensionality and data length can be achieved when applying the distance
algorithm or the maximum search algorithm. Whereas in the 𝑘𝑇 algorithm, a quantum version of
the same order as FastJet is achieved.
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1. Introduction

Quantum computing devices, based on the laws of quantum mechanics, offer the possibility
to efficiently solve specific problems that become very complex or even unreachable for classical
computers since they scale either exponentially or super-polynomially. Very recently, quantum
algorithms have started to be applied in solving problems which appear in high-energy particle
physics. Recent applications of quantum algorithms to HEP cover diverse subareas such as jet
clustering [1–4] or multi-loop Feynman integrals [5]. For a recent review on the applications of
quantum computing to data analysis in HEP we refer the reader to Ref. [6].

In the present work, which is based on Ref. [4], we address the problem of clustering and jet
reconstruction from collider data, which is a nontrivial and computationally expensive task, as it
often involves performing optimizations over potentially large numbers of final-state particles. In
particular, we consider the possibility of using quantum algorithms to improve the velocity in jet
identification. Here we focus on three well-known classical algorithms: K-means clustering [7],
Affinity Propagation (AP) [8] and 𝑘𝑇 -jet clustering in all its variants [9–12]. We propose the
corresponding quantum versions of the precedents algorithms: quantum K-means clustering,
quantum AP-algorithm and quantum 𝑘𝑇 -based algorithms.

These quantum versions made use of two new quantum subroutines proposed in this work. The
first one serves to compute distances satisfying Minkowski metric, whereas the second one consists
of a quantum circuit to track the maximum into a list of unsorted data.

2. Quantum distance in Minkowski space

In quantum computing, it is essential to have the ability to measure quantum entanglement
between two states, as in many cases it determines the possibility of obtaining a quantum advantage.
We rely on the SwapTest method [13] to quantify the similarity of two states.

|0⟩ H • H

|ψ1⟩ ×

|ψ2⟩ ×

Figure 1: Quantum circuit SwapTest.

As it can be seen in Fig. 1, the SwapTest procedure makes use of one auxiliary qubit to get the
inner product between two states:

𝑃( |0⟩) = 1
2
+ 1

2
|⟨𝜓1 |𝜓2⟩|2 . (1)

The Eq. (1) displays that a distance between two quantum vectors can be obtained just measuring
an ancillary qubit.

Vectors in high-energy physics are defined in a four-dimensional space-time with Minkowski
metric. They have the form 𝑥𝑖 = (𝑥𝑖,0, x𝑖), where 𝑥𝑖,0 is the temporal component and x𝑖 represent
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the three spatial components. In the following, we assume that the dimension of the space-time is
𝑑, where 𝑑 − 1 is the number of spatial components. We shall define the analogue of the Euclidean
classical distance in the Minkowski space corresponding to the invariant sum squared 𝑠 (C)

𝑖 𝑗
, which

is commonly called invariant mass squared when vectors are particle four-momenta,

𝑠
(C)
𝑖 𝑗

= (𝑥0,𝑖 + 𝑥0, 𝑗)2 − |x𝑖 + x 𝑗 |2 . (2)

This quantity, which is Lorentz invariant, can be used as test distance to measure similarity
between particle momenta. It is necessary to apply twice the SwapTest subroutine for computing
the Minkowski-type distance through a quantum algorithm. Once for the spatial and once for the
temporal component.

The spatial distance is computed using the subsidiary states:

|𝜓1⟩ =
1
√

2
(
|0, 𝑥𝑖⟩ + |1, 𝑥 𝑗⟩

)
, |𝜓2⟩ =

1√︁
𝑍𝑖 𝑗

(
|x𝑖 | |0⟩ − |x 𝑗 | |1⟩

)
, (3)

where 𝑍𝑖 𝑗 = |x𝑖 |2 + |x 𝑗 |2 is a normalization factor and |0⟩ and |1⟩ are the states of an ancillary qubit.
Whereas the temporal distance is computed as a result of the overlap of the following states:

|𝜑1⟩ = 𝐻 |0⟩ = 1
√

2
( |0⟩ + |1⟩) , |𝜑2⟩ =

1
√
𝑍0

(
𝑥0,𝑖 |0⟩ + 𝑥0, 𝑗 |1⟩

)
, (4)

where 𝑍0 = 𝑥2
0,𝑖 + 𝑥

2
0, 𝑗 . Then, applying the SwapTest to the states |𝜓1⟩, |𝜓2⟩ and |𝜑1⟩, |𝜑2⟩ one gets

the relations:

𝑃( |0⟩|𝑠𝑝𝑎𝑡𝑖𝑎𝑙) =
1
2
+ 1

2
|⟨𝜓1 |𝜓2⟩|2 , 𝑃( |0⟩|𝑡𝑖𝑚𝑒) =

1
2
+ 1

2
|⟨𝜑1 |𝜑2⟩|2 , (5)

where the overlaps |⟨𝜓1 |𝜓2⟩|2 and |⟨𝜑1 |𝜑2⟩|2 are given by

|⟨𝜓1 |𝜓2⟩|2 =
1

2𝑍𝑖 𝑗
|x𝑖 − x 𝑗 |2 , |⟨𝜑1 |𝜑2⟩|2 =

1
2𝑍0

(𝑥0,𝑖 + 𝑥0, 𝑗)2. (6)

At this point, the quantum version of the invariant sum squared follows from the combination of
results from Eq. (5) and Eq. (6):

𝑠
(Q)
𝑖 𝑗

= 2
(
𝑍0(2𝑃( |0⟩|𝑡𝑖𝑚𝑒) − 1) − 𝑍𝑖 𝑗 (2𝑃( |0⟩|𝑠𝑝𝑎𝑡𝑖𝑎𝑙) − 1)

)
. (7)

3. Quantum maximum search

Finding a particular element belonging to a dataset is a recurring problem in data analysis.
This is a computationally very expensive task. However, quantum computing offers suitable tools
to solve data query in a shorter computational time. In particular, it is well known the quadratic
speed up exhibited by Grover’s algorithm [14]. In this work, we present a considerably simpler
algorithm that is used exclusively to find the rough maximum in a list of values.

Let 𝐿 [0, . . . , 𝑁 − 1] be an unsorted list of 𝑁 items. Solving the maximum searching problem
is to find the index 𝑦 such that 𝐿 [𝑦] is the maximum. For clustering algorithms, 𝐿 [𝑦] represents
the inverse of the distance. The quantum algorithm to solve that problem using amplitude encoding
proceeds in two steps:
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1. The list of 𝑁 elements is encoded into a log2(𝑁) qubits state as follows:

|Ψ⟩ = 1
√
𝐿𝑠𝑢𝑚

𝑁−1∑︁
𝑗=0

𝐿 [ 𝑗] | 𝑗⟩ , (8)

where 𝐿𝑠𝑢𝑚 =
∑𝑁−1

𝑗=0 𝐿 [ 𝑗]2 is a normalization constant.
2. The final state is measured.

The procedure is rerun several times to reduce the statistical uncertainty. Once done, the most
repeated state gives us the rough maximum.

4. Quantum clustering algorithms

4.1 K means

K-means is an unsupervised machine learning algorithm that classifies the elements of a dataset
into 𝐾 groups called clusters [7]. The input for this algorithm is a set of 𝑁 data points or vectors in
𝑑 dimensions as well as the number of clusters 𝐾 , with 𝐾 ≤ 𝑁 , and its output is a set of 𝐾 centroids.
The main core of this algorithm is computing distances among data points and then assigning
the data points to their nearest centroid. That might be speed up using the quantum algorithms
explained in Sec. 2 and 3 respectively assuming the data has been loaded from a quantum Random
Access Memory (qRAM). In particular, we would obtain a speed up from O(𝑁𝐾𝑑) in the classical
version to O(𝑁 log𝐾 log(𝑑 − 1)) in our quantum version, where the speed-up in the dimensionality
𝑑 would be achieved when the quantum distance subroutine is applied and the speed-up number
of clusters 𝐾 would be achieved when the minimum is obtained by the quantum maximum search
algorithm.

4.2 Affinity Propagation

The Affinity Propagation algorithm is an unsupervised machine learning algorithm that, in
contrast to K-means, does not need the number of clusters 𝐾 to be defined beforehand [8]. Its
main ideas are that all data points are consider as exemplars (clusters) and what is called “passing
messages between data points”. That is achieved calculating the responsibility matrix 𝑅(𝑖, 𝑘), that
measures how well-suited 𝑘 is to serve as an exemplar for 𝑖, and the availability matrix, that gauges
how appropriate it would be for 𝑖 to choose 𝑘 as its exemplar. These matrices are computed based on
the so-called similarity matrix. This matrix includes a distance as a metric to quantify the similarity
among data points. This distance will be, in our study, the invariant sum squared shown in Eq. (8)
and it might be computed quantumly. In fact, one would obtain a speed-up from O(𝑁2𝑇𝑑) to
O(𝑁2𝑇 log(𝑑 − 1)), where 𝑁 is the number of data points, 𝑇 is the iterations of the algorithm and
𝑑 the dimensionality.

4.3 𝑘𝑇 jet algorithm

The inclusive variant of the generalised 𝑘𝑇 -jet algorithm is formulated as follows:
1. For each pair of partons 𝑖, 𝑗 the following distance is computed:

𝑑𝑖 𝑗 = min(𝑝2𝑝
𝑇,𝑖
, 𝑝

2𝑝
𝑇, 𝑗

)Δ𝑅2
𝑖 𝑗/𝑅2, (9)
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with Δ𝑅2
𝑖 𝑗

= (𝑦𝑖 − 𝑦 𝑗)2 + (𝜙𝑖 − 𝜙 𝑗)2, where 𝑝𝑇,𝑖 , 𝑦𝑖 and 𝜙𝑖 are the transverse momentum (with
respect to the beam direction), rapidity and azimuth of particle 𝑖. 𝑅 is a jet-radius parameter usually
taken of order 1. For each particle 𝑖 the beam distance is 𝑑𝑖𝐵 = 𝑝

2𝑝
𝑇,𝑖

.
2. Find the minimum 𝑑𝑚𝑖𝑛 amongst all the distances 𝑑𝑖 𝑗 , 𝑑𝑖𝐵. If 𝑑𝑚𝑖𝑛 is a 𝑑𝑖 𝑗 , the particles

𝑖 and 𝑗 are merged into a single particle summing their four-momenta; if 𝑑𝑚𝑖𝑛 is a 𝑑𝑖𝐵 then the
particle 𝑖 is declared as a final jet and it is removed from the list.

3. Repeat from step 1 until there are no particles left.
The step 2 of the above flow chart might be speed up using the quantum search algorithm presented
in Sec. 3. Then, the quantum 𝑘𝑇 -jet algorithm would be O(𝑁 log 𝑁) which outperforms the O(𝑁2)
version of the 𝑘𝑇 -jet algorithm and is of the same order as the FastJet version.

5. Quantum simulations

In Table 1, the quantum algorithms described above are tested with a simulated physical 𝑛-
particle event produced at the LHC. The efficiency Y𝑐, defined as the quotient of the number of
particles clustered in the same way as their classical counterpart and the total number of particles to
be classified, is reasonably high for every algorithm, which evidences the success of our quantum
implementations.

Quantum
K-means

Quantum Affinity
Propagation

Quantum
𝑘𝑇 , 𝑝 = 1

Quantum
anti-𝑘𝑇 , 𝑝 = −1

Quantum
Cam/Aachen, 𝑝 = 0

Y𝑐 0.94 1.00 0.98 0.99 0.98

Table 1: Efficiencies of the different quantum algorithms in comparison with their classical counterparts.

6. Conclusions

We have considered the quantum versions of the well-known K-means, AP and 𝑘𝑇 -jet clustering
algorithms. These quantum versions, which are based on two novel quantum procedures, might
speed up their classical counterparts on a quantum device with qRAM. The first one is a quantum
subroutine which serves to compute distances satisfying Minkowski metric, whereas the second
one consists of a quantum circuit to track the rough maximum into a list of unsorted data.

In the case of the K-means clustering algorithm, applying both quantum subroutines we would
get an exponential advantage in the vector dimensionality 𝑑, as well as in the number of clusters
𝐾 . In the quantum version of the Affinity Propagation method the similarity is computed with the
same quantum procedure as in the K-means case. Thus, it would lead to an exponential speed-up
regarding its classical counterpart in the vector dimensionality 𝑑. Finally, we have presented the
quantum versions of the well-known 𝑘𝑇 -jet clustering algorithms. On a true universal quantum
device, the implementation of these algorithms would exhibit an exponential speed up in finding the
minimum distance. In this way, we would obtain a quantum version of order O(𝑁 log(𝑁)), which
is of the same order as the fully optimal version of FastJet.

For all the clustering algorithms considered, the quantum simulations show an excellent
performance and clustering efficiencies. Furthermore, the comparison with their classical counterparts
displays that both classifications of the LHC simulated data are quite in agreement.
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