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Cerenkov Differential counters with Achromatic Ring focus (CEDARs) in the COMPASS exper-
iment beamline were designed to identify particles in limited intensity beams with divergence
below 65𝜇rad. However, in the 2018 data taking, a beam with a 15 times higher intensity and a
beam divergence of up to 300𝜇rad was used, hence the standard data analysis method could not
be used. A machine learning approach using neural networks was developed and examined on
multiple Monte Carlo simulations. Different types of network were tested and their configurations
optimized using a genetic algorithm with the best performing model being integrated into the
current data analysis software written in C++.
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1. Introduction

The COMPASS experiment at CERN focuses on study of hadron structure and spectroscopy
using high intensity muon and hadron beams. Hadron beams are a mixture of particles, e.g. a 190
GeV negative hadron beam contains about 97 % of 𝜋−, 2.5% of 𝐾− and < 1% of 𝑝. CEDAR
detectors in the COMPASS experiment beamline were designed to identify particles in limited
intensity beams with a divergence below 65 𝜇rad. However, during the 2018 data taking, a beam
with 15 times higher intensity was used.

CEDARs were prepared to withstand such conditions by a major upgrade of the frontend
electronics and photomultipliers as well as a redesign of the corresponding firmware. In addition,
the beam divergence of those runs was up to 300 𝜇rad with only 10-15 % of particles being within
the designed divergence range. Hence, the previous method of data analysis using the likelihood
approach cannot be used in this case. [1][2]

This work (for details, see [3]) presents a new approach for particle separation based on
artificial neural networks developed in Python, their optimization, analyses and integration into C++
framework. In addition, effects aggravating separation are identified and possible improvements for
the AMBER experiment replacing the COMPASS experiment in 2023 are suggested. All results
presented in this work are based on Monte Carlo simulations.

2. CEDAR detectors

CEDAR is an abbreviation for ‘CErenkov Differential counters with Achromatic Ring focus’, a
name used for a detector based on Cerenkov effect used for 𝜋−, 𝐾− and 𝑝 identification. Two alike
CEDARs are positioned approximately 30 meters upstream of the COMPASS target. [1][2][4]

CEDARs detect rings of Cerenkov photons of predefined radius, which is different for different
particles (due to different emission angles), using 8 photomultipliers (PMTs). Originally, they were
designed as a majority counter, where for highly parallel beam 6-8 PMTs should fire to positively
identify a particle. However, not all beam particles traverse CEDARs parallel to their optical axis.
Although the beam inclination leads to a low efficiency of the majority approach, a certain PMTs hit
pattern is characteristic for different particle species at a given inclination. This phenomenon was
utilized to develop a likelihood ansatz where response of each PMT was parameterized individually
as a function of radiation angle (for details, see [2]), to better compensate for the aforementioned
issues.

2.1 Challenges with 2018 data taking

In 2018, a beam with 15 times higher intensity was used, which results in observing correlated
events (additional undetected track). In addition, SI trackers were replaced by FI detectors that can
withstand the increased radiation, but have lower angle measurement precision. Because of that,
the likelihood method cannot be used in this case and since the AMBER experiment will also use
a beam of the same composition, it will not be applicable for its data taking as well.

0In reality, the PMTs are shifted by 22.5 clockwise.

2



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
4

Identification of Beam Particles Using Detectors based on Cerenkov effect and Machine Learning in the
COMPASS Experiment at CERN František Voldřich

Figure 1: CEDAR schematic - two particles with the same momentum but with different masses, represented
by red and green lines, radiate Cherenkov light at different angles. This results in rings with different radii.
A diaphragm selects the rings from the required particle type (green line), while the radiation from the other
particle does not go through the diaphragm to trigger signal from the PMTs. [1]

3. New approach

There are three methods using artificial neural networks (ANNs) proposals to examine with
the goal of selecting kaons (signal) and discarding pions (background). While the first one tries to
directly predict the particle type, the other two formulate and compare two hypothesis to get the
final likelihood.

1. Method 1: ANN as a direct binary classifier
For input we use beam position and angle at spectrometer together with responses from
PMTs of each CEDAR. The network has only one output neuron that can be interpreted as
a likelihood (due to the imbalance between kaons and pions in the sample) of observing a
signal event.

2. Method 2: ANN as a PMTs response predictor
The network is used to predict a probability that a certain PMT fires assuming the event is
induced by kaon or by pion. One model is trained on signal sample, the other on background
sample. The input consists of position and angle at spectrometer and output contains 8
neurons representing each PMT of a CEDAR. We then calculate both of these likelihoods for
a given event and take their ratio. This method could show problematic as it does not take
account correlation between responses of the PMTs.

3. Method 3: ANN as a CEDAR response predictor
The aim of this method is to take into account the above mentioned correlation between PMTs
responses, so the ANN predicts the exact pattern of PMTs assuming the type of the particle
that induced it. The likelihoods are then aggregated similarly to the previous method. Hence,
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we have 4 input neurons and 256 output neurons1 for each CEDAR. This network might suffer
from instability.

3.1 Methods comparison

As shown in fig. 2, method 2 performed significantly worse than the other two methods,
probably due to the correlation between PMTs responses. Method 1 and 3 performed similarly and
yet no problems with instability in method 3 was observed. However, since method 1 is notably
faster and easier to work with, it was used for further analysis.

3.2 Meta parameters optimisation

Figure 2: ROC curves of the new methods.

Three different network types were impe-
mented: Multi Layer Perceptron (MLP), Radial
Basis Function and Random Vector Functional
Network. Performance of these networks with
hyper parameters selected by hand was com-
pared with MLP being slightly better than the
other two and hence selected for further work.

For hyper parameters optimisation of the
MLP network such as number of hidden lay-
ers and neurons, learning rates, activation func-
tions etc., a differential evolution heuristic was
used. Its results were comparable to structures
selected by hand, which implies that the problem is insensitive to network structure (likely due to
its simplicity).

3.3 Dataset size

Monte Carlo used simulations contain ≈80 million events. Analysis and training over such
datasets takes a long time. By iteratively halving the training dataset and batch size, we determined
that there is a limit of improving results with the use of more data. It appears the improvements are
only significant to ≈300 thousand events, which accounts for only ≈6.5 thousand of kaons. This
may prove to be important especially when obtaining a kaon sample from measured data.

3.4 Inference in C++

Aforementioned models were developed using TensorFlow and Keras. Using the frugally-deep
library, the best performing trained model was exported to a binary file, which was then loaded using
the mentioned library in a C++ program. This program can execute inference with no dependence
on the Python Interpreter. [5]

A class for handling the loading and inference was created. For using the model in PHAST, a
C++ framework used for COMPASS data analysis, one must include it in lib or user directory to
be automatically compiled and linked by PHAST upon its compilation, because it is not part of the
standard installation. [6]

1Each of the 8 PMTs can output 2 values, i.e. 28 = 256 combinations.
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Figure 3: Values of loss functions and ROC curves of different dataset sizes (divided by curve of the largest
dataset) used for training.

4. Possible improvements for the AMBER experiment

Because the AMBER Drell-Yan experiment will use a beam of the same composition, the
results are applicable for it as well. For this reason, possible improvements (see the performance of
the model in tab. 1) of the new method were examined, which required identification of the effects
aggravating separation.

predicted 0 predicted 1

true 0 4 819 955 19 124

true 1 60 667 60 666

Sensitivity 0.5000
Specificity 0.9961
Accuracy 0.9839
Background reduction 253.04

Table 1: Confusion matrix and some statistics for 50 % working point.

Four issues needed to be taken into account in Monte Carlo simulations to better match data:

1. MC-1xxx: additional undetected track (correlated noise)

2. MC-x1xx: additional random noise

3. MC-xx1x: PMTs inefficiency

4. MC-xxx1: angle smearing

Combinations of different effects were examined to identify the main factors complicating
separation. The biggest improvement can be achieved by removing angle smearing.

4.1 Further improvements

In reality, each PMT consists of four pads giving signal individually. Replacing binary response
of PMTs with number of active pads improves the separation almost as much as removing correlated
noise, using the response of each pad is expected to perform even better.2

2These simulations were unfortunately not available at the time of writing this work.

5



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
4

Identification of Beam Particles Using Detectors based on Cerenkov effect and Machine Learning in the
COMPASS Experiment at CERN František Voldřich

In addition, pads give signal for 10ns. This time can be reduced and signal off time hits caused
by undetected tracks discarded.

5. Conclusion

Figure 4: The biggest improvements achievable by
removing 1, 2, 3 and all problems.

Three new methods and tools for their
performance analysis were developed and the
underlying ANN was optimized using genetic
heuristic. The best performing model was
exported and integrated to a C++ framework
PHAST with no dependency on Python inter-
preter for inference. In addition, issues aggra-
vating separation were identified and improve-
ment achievable by resolving them was quanti-
fied, the most significant being angle measure-
ment precision. This can be accomplished by
replacing FI detectors with radiation hard SI
trackers. Meanwhile, correlated noise can be improved by fastening electronic, i.e. shortening
signal length, random noise can be reduced by improving shielding and efficiency by enlarging the
diaphragm opening (in this moment, this would also increase correlated noise). Further opportuni-
ties for improvement were recognized by using PMTs pads individually.
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