
P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory with
tensors and automatic differentiation

Matthew Feickert,𝑎,∗ Lukas Heinrich𝑏 and Giordon Stark𝑐

𝑎University of Wisconsin-Madison,
447 Lorch St., Madison, WI, USA

𝑏Technical University Munich,
Arcisstraße 21, 80333 München, Germany

𝑐University of California Santa Cruz SCIPP,
Santa Cruz, CA, USA
E-mail: matthew.feickert@cern.ch, lukas.heinrich@cern.ch,
giordon.holtsberg.stark@cern.ch

The HistFactory p.d.f. template is per-se independent of its implementation in ROOT and it is
useful to be able to run statistical analysis outside of the ROOT, RooFit, RooStats framework. pyhf
is a pure-Python implementation of that statistical model for multi-bin histogram-based analysis
and its interval estimation is based on the asymptotic formulas of “Asymptotic formulae for
likelihood-based tests of new physics”. pyhf supports modern computational graph libraries such
as TensorFlow, PyTorch, and JAX in order to make use of features such as auto-differentiation and
GPU acceleration. In addition, pyhf’s JSON serialization specification for HistFactory models
has been used to publish 23 full probability models from published ATLAS collaboration analyses
to HEPData.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:matthew.feickert@cern.ch
mailto:lukas.heinrich@cern.ch
mailto:giordon.holtsberg.stark@cern.ch
https://pos.sissa.it/

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory Matthew Feickert

1. Introduction

Measurements in High Energy Physics (HEP) aim to determine the compatibility of observed
events with theoretical predictions. The relationship between them is often formalised in a statisti-
cal model 𝑓 (𝒙 |𝝓) describing the probability of data 𝒙 given model parameters 𝝓. Given observed
data, the likelihood L(𝝓) then serves as the basis to test hypotheses on the parameters 𝝓. For
measurements based on binned data (histograms), the HistFactory [1] family of statistical models
has been widely used for likelihood construction in both Standard Model (SM) measurements (e.g.
Refs. [2, 3]) as well as searches for new physics (e.g. Ref. [4]) and reinterpretation studies (e.g.
Ref. [5]). pyhf [6, 7] is presented as the first pure-Python implementation of the HistFactory
specification. In addition to providing a Python and command line API for HistFactory model
building and inspection, it leverages modern open source 𝑛-dimensional array libraries to take ad-
vantage of automatic differentiation and hardware acceleration to accelerate the statistical inference
and reduce the time to analyst insight.

2. HistFactory Formalism

HistFactory statistical models — described in depth in Ref. [8] and Ref. [9] — center
around the simultaneous measurement of disjoint binned distributions (channels) observed as event
counts 𝒏. For each channel, the overall expected event rate is the sum over a number of physics
processes (samples). The sample rates may be subject to parametrised variations, both to express the
effect of free parameters 𝜼 and to account for systematic uncertainties as a function of constrained
parameters 𝝌, whose impact on the expected event rates from the nominal rates is limited by
constraint terms. In a frequentist framework these constraint terms can be viewed as auxiliary
measurements with additional global observable data 𝒂, which paired with the channel data 𝒏

completes the observation 𝒙 = (𝒏, 𝒂). The full parameter set can be partitioned into free and
constrained parameters 𝝓 = (𝜼, 𝝌), where a subset of the free parameters are declared parameters
of interest (POI) 𝝍 (e.g. the signal strength) and all remaining parameters as nuisance parameters
𝜽 .

𝑓 (𝒙 |𝝓) = 𝑓 (𝒙 |
free
↓
𝜼, 𝝌

↑
constrained

) = 𝑓 (𝒙 |
parameters of interest
↓
𝝍, 𝜽

↑
nuisance parameters

) (1)

The overall structure of a HistFactory probability model is then a product of the analysis-
specific model term describing the measurements of the channels and the analysis-independent set
of constraint terms:

𝑓 (𝒏, 𝒂 | 𝜼, 𝝌) =
∏

𝑐∈ channels

∏
𝑏∈ bins𝑐

Pois (𝑛𝑐𝑏 | a𝑐𝑏 (𝜼, 𝝌))︸ ︷︷ ︸
Simultaneous measurement

of multiple channels

∏
𝜒∈𝝌

𝑐𝜒 (𝑎𝜒 | 𝜒)︸ ︷︷ ︸
constraint terms

for “auxiliary measurements”

, (2)

where within a certain integrated luminosity one observes 𝑛𝑐𝑏 events given the expected rate
of events a𝑐𝑏 (𝜼, 𝝌) as a function of unconstrained parameters 𝜼 and constrained parameters 𝝌.

2

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory Matthew Feickert

The latter has corresponding one-dimensional constraint terms 𝑐𝜒 (𝑎𝜒 | 𝜒) with auxiliary data 𝑎𝜒

constraining the parameter 𝜒. The expected event rates a𝑐𝑏 are defined as

a𝑐𝑏 (𝝓) =
∑︁

𝑠∈ samples
a𝑠𝑐𝑏 (𝜼, 𝝌) =

∑︁
𝑠∈ samples

(∏̂
∈ 𝜿

^𝑠𝑐𝑏 (𝜼, 𝝌)
)

︸ ︷︷ ︸
multiplicative modifiers

(
a0
𝑠𝑐𝑏 (𝜼, 𝝌) +

∑︁
Δ∈𝚫

Δ𝑠𝑐𝑏 (𝜼, 𝝌)︸ ︷︷ ︸
additive modifiers

)
(3)

from constant nominal rate a0
𝑠𝑐𝑏

and a set of multiplicative and additive rate modifiers 𝜿(𝝓) and
𝚫(𝝓).

3. pyhf

Through adoption of open source 𝑛-dimensional array (“tensor” in the machine learning world)
computational Python libraries, pyhf decreases the abstractions between a physicist performing an
analysis and the statistical modeling without sacrificing computational speed. By taking advantage
of tensor calculations and hardware acceleration, pyhf can achieve comparable or better performance
than the C++ implementation of HistFactory on data from real LHC analyses in most situations.
pyhf’s default computational backend is built from NumPy and SciPy, and supports TensorFlow,
PyTorch, and JAX as alternative backend choices. These alternative backends support hardware
acceleration on GPUs, and in the case of JAX JIT compilation, as well as auto-differentiation
allowing for calculating the full gradient of the likelihood function — all contributing to speeding
up fits.

3.1 JSON Schema

The structure of the JSON specification of HistFactory models [8] used by pyhf closely
follows the original XML-based specification [1]. The JSON specification for a HistFactory
workspace is a primary focus of Ref. [8], but a workspace can be summarised as consisting of a set
of channels (an analysis region) that include samples and possible parameterised modifiers, a set of
measurements (including the POI), and observations (the observed data). Listing 1 demonstrates
a simple workspace representing the measurement of a single two-bin channel with two samples:
a signal sample and a background sample. The signal sample has an unconstrained normalisation
factor `, while the background sample carries an uncorrelated shape systematic. The background
uncertainties for the bins are 10% and 20% respectively. Use of this JSON specification has allowed
for the publication of 23 full statistical models from ATLAS analyses to HEPData at the time of
writing in 2022. This has been a significant step forward in enabling reinterpretation and recasting
of LHC results by the broader particle physics community [10].

3.2 Enabling Analysis Ecosystems

In addition to being used in ATLAS analyses, and in the flavor physics community [11,
12], pyhf has been used as a computational engine for reinterpretation studies by the particle
physics phenomenology community [13, 14] and as the inference engine for Scikit-HEP library
cabinetry [15], as well as other more analysis specific open source projects [16, 17]. The

3

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory Matthew Feickert

{

"channels": [
{ "name": "singlechannel",
"samples": [
{ "name": "signal",
"data": [5.0, 10.0],
"modifiers": [{ "name": "mu", "type": "normfactor", "data": null}]

},

{ "name": "background",
"data": [50.0, 60.0],
"modifiers": [{"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0,12.0]}]

}

]

}

],

"observations": [
{"name": "singlechannel", "data": [50, 60]}

],

"measurements": [
{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }

]

}

Listing 1: A toy example of a 2-bin single channel workspace with two samples. The signal sample has
expected event rates of 5.0 and 10.0 in each bin, while the background sample has expected event rates of
50.0 and 60.0 in each bin. An experiment provided the observed event rates of 50.0 and 60.0 for the bins in
that channel. The uncorrelated shape systematic on the background has 10% and 20% uncertainties in each
bin, specified as absolute uncertainties on the background sample rates. A single measurement is defined
which specifies ` as the POI [8].

adoption of pyhf as a library for other projects to build upon has large implications for establishing
standards and providing improvements across ecosystems of analysis tools. Of particular note, the
Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP) [18] has
adopted pyhf as a core part of its Analysis Systems pipeline — a demonstrator model for modern
distributed computing for experiments in the high-luminosity LHC (HL-LHC) era — which has
provided rigorous testing of its interoperability with other tools. Improvements to pyhf directly
impact all the areas highlighted in Figure 1. In addition to its computational abilities, pyhf is
highly portable given its pure-Python nature and use of dependencies, like SciPy, that are broadly
trusted in computational science and have been built for ubiquitous architectures. This allows for
full pyhf runtimes to be natively used in novel environments, such as the Pyodide port of CPython
to WebAssembly/Emscripten. While Pyodide is not optimal for serious computational use cases,
the ability to use the full pyhf API allows for creation of statistical linting and visualization tools
that use the same tooling as in production while leveraging interactivity of web native platforms
enabled by Pyodide and the PyScript framework.

4. Conclusions

pyhf is the first pure-Python implementation of the HistFactory specification that leverages
modern open source 𝑛-dimensional array libraries as computational backends to exploit automatic
differentiation and hardware acceleration to speed up fits and reduce the time to scientific insight.

4

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory Matthew Feickert

Figure 1: Overview of the IRIS-HEP Analysis Systems pipeline for analysis in the HL-LHC era. The red
outline indicates the areas of the pipeline in which pyhf is used either directly or as an underlying library.

It provides a Python and command line API for building, inspection, and to perform statistical
inference for HistFactory models, and its JSON model serialization has enabled publication of
full statistical models from the ATLAS collaboration and improved reinterpretations. As pyhf is
an open source library that has been built as part of the Scikit-HEP community project it has been
readily adopted by a growing number of other libraries and tools as a computational and inference
engine, allowing for improvements in the library API and computational backends to propagate
to the broader user community. Growing community support and interaction, adoption across the
broader particle physics community, and rigorous testing from LHC experiments and IRIS-HEP
systems has demonstrated that pyhf has become a key component of the growing ecosystem of
Pythonic open source scientific tools in particle physics.

Acknowledgments

Matthew Feickert’s contributions to this work were supported by the U.S. National Science
Foundation (NSF) under Cooperative Agreement OAC-1836650 (IRIS-HEP). Lukas Heinrich is
supported by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-
2094-390783311.

5

P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
5

pyhf: pure-Python implementation of HistFactory Matthew Feickert

References

[1] K. Cranmer, G. Lewis, L. Moneta, A. Shibata and W. Verkerke, HistFactory: A tool for
creating statistical models for use with RooFit and RooStats, Tech. Rep.
CERN-OPEN-2012-016 (Jan, 2012).

[2] ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson
final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88.

[3] LHCb Collaboration, Dalitz plot analysis of 𝐵0 → 𝐷
0
𝜋+𝜋− decays, Phys. Rev. D 92 (2015)

032002.

[4] ATLAS Collaboration. ATLAS-CONF-2018-041, 2018.

[5] L. Heinrich, H. Schulz, J. Turner and Y.-L. Zhou, Constraining A4 leptonic flavour model
parameters at colliders and beyond, JHEP 04 (2019) 144.

[6] L. Heinrich, M. Feickert and G. Stark, “pyhf: v0.7.0.” 10.5281/zenodo.1169739.

[7] L. Heinrich, M. Feickert, G. Stark and K. Cranmer, pyhf: pure-python implementation of
histfactory statistical models, Journal of Open Source Software 6 (2021) 2823.

[8] ATLAS Collaboration. ATL-PHYS-PUB-2019-029, 2019.

[9] Feickert, Matthew, Heinrich, Lukas and Stark, Giordon, Likelihood preservation and
statistical reproduction of searches for new physics, EPJ Web Conf. 245 (2020) 06017.

[10] K. Cranmer et al., Publishing statistical models: Getting the most out of particle physics
experiments, SciPost Phys. 12 (2022) 037 [2109.04981].

[11] Belle II Collaboration, Search for B+→K+aa¯ Decays Using an Inclusive Tagging Method
at Belle II, Phys. Rev. Lett. 127 (2021) 181802 [2104.12624].

[12] Belle Collaboration, Search for a dark leptophilic scalar produced in association with 𝜏+𝜏−

pair in 𝑒+𝑒− annihilation at center-of-mass energies near 10.58 GeV, 2207.07476.

[13] G. Alguero, S. Kraml and W. Waltenberger, A SModelS interface for pyhf likelihoods,
Comput. Phys. Commun. 264 (2021) 107909 [2009.01809].

[14] G. Alguero, J. Heisig, C.K. Khosa, S. Kraml, S. Kulkarni, A. Lessa et al., New developments
in SModelS, PoS TOOLS2020 (2021) 022 [2012.08192].

[15] Alexander Held, “cabinetry: v0.5.1.” 10.5281/zenodo.4742752.

[16] Mason Proffitt, “abcd-pyhf: v0.0.5.”

[17] Nathan Simpson and Lukas Heinrich, neos: End-to-End-Optimised Summary Statistics for
High Energy Physics, 2203.05570.

[18] IRIS-HEP, “Institute for Research and Innovation in Software for High Energy Physics
(IRIS-HEP).” https://iris-hep.org/.

6

https://cds.cern.ch/record/1456844
https://doi.org/10.1016/j.physletb.2014.05.011
https://doi.org/10.1103/PhysRevD.92.032002
https://doi.org/10.1103/PhysRevD.92.032002
https://doi.org/10.1007/JHEP04(2019)144
https://doi.org/10.21105/joss.02823
https://doi.org/10.1051/epjconf/202024506017
https://doi.org/10.21468/SciPostPhys.12.1.037
https://arxiv.org/abs/2109.04981
https://doi.org/10.1103/PhysRevLett.127.181802
https://arxiv.org/abs/2104.12624
https://arxiv.org/abs/2207.07476
https://doi.org/10.1016/j.cpc.2021.107909
https://arxiv.org/abs/2009.01809
https://doi.org/10.22323/1.392.0022
https://arxiv.org/abs/2012.08192
https://arxiv.org/abs/2203.05570
https://iris-hep.org/

	Introduction
	HistFactory Formalism
	pyhf
	JSON Schema
	Enabling Analysis Ecosystems

	Conclusions

