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Dynamics of quarks and gauge fields in the lowest-energy
states in QCD and QED
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The dynamics of quarks and gauge fields in the lowest energy states in QCD and QED interactions
is studied by compactifying the (3+1)D space-time to the (1+1)D space-time with cylindrical
symmetry and by combining Schwinger’s longitudinal confinement in (1+1)D with Polyakov’s
transverse confinement in (2+1)D. Using the action integral, we separate out the transverse and
longitudinal degrees of freedom. By solving the derived transverse and longitudinal equations, we
study the QCD and QED collective excitations. In addition to the well known QCD low-energy
states, we find stable collective QED excitations showing up as massive QED-confined mesons,
in support of previous studies. In particular, the masses of the recently observed X17 particle at
about 17 MeV and the E38 particle at about 38 MeV are calculated in the developed approach, in
good agreement with experimental results.
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Dynamics of quarks and gauge fields in lowest states in QCD and QED

1. Introduction

One of the most exciting problems of modern physics is the origin and nature of the dark matter
(DM). There are various DMmodels, proposing the existence of different hypothetical particles. For
example, there are the model assuming the weakly interacting massiive particles (WIMPs) [1, 2],
the axions and axion-like particles [3, 4], the dark photons [5–7], the sterile neutrinos [8–10], the
fifth force of Nature [11], and the QED-confined composite qq̄ mesons and QED neutron [12–14],
etc.

The DM model based on the QED-confined qq̄ mesons is however subject to the question
whether a quark and an antiquark can indeed be confined in the QED interaction. It is well-known
that in static quark lattice gauge calculations in (3+1)D, quarks are deconfined in compact QED
because the static quark compact QED lies in the weak-coupling regime [15]. On the other hand,
according to Schwinger, there is a confined regime in (1+1)D QED for dynamical massless quarks
[16], and according to Polyakov, there is also a confined regime for quarks in (2+1)D compact QED
[17], for all gauge coupling interaction strengths. Furthermore, the proposed phenomenological
QED-confined qq̄ composite particles in [12, 13] are supported by experimental observations of
the X17 [18], the E38 [19], and the anomalous soft photons [20]. Therefore, it is worth examining
whether there can be an additional theoretical support for the proposed QED-confined qq̄ mesons
[12, 13] by combining the longitudinal confinement of Schwinger’s massless dynamical quarks in
(1+1)D QED with Polyakov’s transverse confinement of quarks in compact QED in (2+1)D.

We take Polyakov’s transverse confinement configuration in compact QED in (2+1)D as input
to construct a “stretch (2+1)D” flux-tube model for the production of a quark and an antiquark in a
QED meson in (3+1)D space-time [21]. The Polyakov’s transverse confinement of the quark and
the antiquark is realized on the transverse (x1, x2)-plane at x3 ∼ 0, at the birth of the q-q̄. The
creation of the charge q-q̄ pair will be accompanied by the associated creation of their confining
gauge fields A, E, and B = ∇× A, which by causality can only be in the neighborhood of the created
charges initially with the created E and B fields lie along the longitudinal x3 direction. Subsequent
to their birth, the quark and antiquark will execute stretching and contracting “yo-yo” motion along
the longitudinal x3 direction, appropriate for the QED meson bound state we are studying. As the
quark and antiquark stretch outward in the longitudinal x3 directions, we can construct a longitudinal
tube structure of gauge fields in the stretch (2+1)D configuration by duplicating longitudinally the
transversely-confined gauge fields that exist on the transverse (x1, x2)-plane at x3 ∼ 0 initially at
their birth, for the longitudinal region between the stretching quark and antiquark. The particles,
created in such a special (3+1)D space-time can be considered to be as candidates for the QED-
confined qq̄ composites as DM particles [12, 13]. We examine the model for quarks and gauge
fields, keeping in our mind the possibility to compare with experimental results on X17 and E38
bosons [18, 19].

2. Reducing (3+1) QCD-QED to (1+1)D QCD-QED with cylindrical symmetry

We start from theU(1)
⊗

SU(3)Lagrangian for quarks interacting in QCD andQED in (3+1)D
space-time in the stretch (2+1)D configuration [22]

A4D =

∫
d4x Tr

{
Ψ̄(x)γµΠµΨ(x) − Ψ̄(x)mΨ(x) − LA

}
, (1)
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Dynamics of quarks and gauge fields in lowest states in QCD and QED

γµΠµ = iD/ = γµiDµ = γ
µ(i∂µ + g4D Aµ) = γµ(pµ + g4D Aµ), (2)

LA =
1

2π2R4
Tg

2
4D

[1 − cos(πR2
Tg4D Fµν(x))], (3)

Fµν = ∂µAν − ∂νAµ − ig4D[Aµ, Aν], Fµν = Fa
µνta, Aµ = Aa

µta . (4)

In these equations we introduce the quark fieldsΨ, and the QCD and QED gauge fields Aµ
{QCD,QED}.

The QCD gauges fields are AµQCD=
∑8

a=1 Aµata, where {t1, t2, t3, ..., t8} are the SUc(3) generators,
µ = 0, 1, 2, 3 are the indices of the space time coordinates xµ, with the signature gµµ=(1, -1, -1, -1).
The QED gauge field is AµQED=Aµ0 t0 where t0 is the generator of the color-singlet U(1) subgroup,

t0 =
1
√

6

©«
1 0 0
0 1 0
0 0 1

ª®®¬ . (5)

We shall use the summation convention over repeated indices, except when the summation symbols
are needed to resolve ambiguities. Here the subscript label of ‘4D’ in g4D and A4D is to indicate
that g4D is the coupling constant in 4D space-time,A4D is the action integral over the 4D space-time
coordinates of x0, x1, x2, and x3, and m is the quark mass. The quantity

√
πRT in Eq. (3) is a

transverse length scale which has been chosen to be the square root of the flux tube area.

We reduce (3+1)D QCD-QED to (1+1)D, by taking the fermion fields with cylindrical sym-
metry in the stretch (2+1)D configuration in the form

Ψ4D = Ψ(x) =
©«

G1(r⊥) f+(X)
G2(r⊥) f−(X)
G1(r⊥) f−(X)
−G2(r⊥) f+(X)

ª®®®®¬
, where r⊥ = (x1, x2) and X = (x3, x0). (6)

After some bulkymanipulations separating the longitudinal and transversemotions of both the quark
fields and the gauge fields, we obtain the (1+1)D Lagrangian with cylindrical flux-tube symmetry
[22]

A2D = Tr
∫

dX

{
ψ̄(X)γµ2D(pµ+g2D Aµ(X))ψ(X) − mT ψ̄(X)ψ(X)

}
−

∫
dt (κ1 + κ2)|x3(q̄) − x3(q)| + Tr

∫
dX

{
−

1
2

F03(X)F03(X)
}
, (7)

where g2D , mT , κ1 and κ2 are given in [22]. Note that g2D is a dimensional coupling constant.

The transverse motion is governed by the magnetic field-like equations whose solutions for
fermions have the standard form corresponding to the Landau level states for the stretch (2+1)D
configuration

G1(r⊥) = C1eiΛ1φe−r
2
⊥/2r |Λ1 |

⊥ L( |Λ1 |)
n (r2

⊥), (8a)
G2(r⊥) = C2eiΛ2φe−r

2
⊥/2r |Λ2 |

⊥ L( |Λ2 |)
n (r2

⊥). (8b)

In this way, both the 2D gauge fields and the coupling constant are governed by the functions
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G1,2(r⊥) so that

Aµ4D(r⊥, X) =
g4D

g2D

[
G∗1(r⊥)G1(r⊥) + G∗2(r⊥)G2(r⊥)

]
Aµ2D(X), µ = 0, 3. (9)

As a consequence, the coupling constant g2D and g4D are related by

g2
2D = g2

4D

∫
dr⊥

[
G1(r⊥)

∗G1(r⊥) + G2(r⊥)
∗G2(r⊥)

]2
, (10)

yielding a relation between g2D , g4D , and the flux tube radius RT [12, 13]. For our case in the lowest
energy transverse zero mode with Polyakov’s transverse confinement, the transverse mass mT of
the quark and antiquark is unchanged from their rest mass. The Lagrangian (7) generates 2D Dirac
equation for longitudinal motion in (1+1)D,

{γµ2D(pµ + g2D A2D
µ (X)) − mT }ψ2D(X) = 0, µ = 0, 3, (11)

which for massless quarks results in a gauge-invariant relation between the quark current jµ(X) and
the gauge field Aµ(X) ≡ Aµ2D(X),

jµ(X) = −
g2D

π

(
Aµ(X) − ∂µ

1
∂η∂η

∂νAν(X)
)
. (12)

3. Massive bosons

The action integral (7) in (1+1)D also yields the Maxwell equation,

∂ν
{
∂νAµ(X) − ∂µAν(X)

}
= g2D jµ(X), µ, ν = 0, 3. (13)

The above Maxwell equation and the gauge-invariant relation (12) between the current jµ(X) and
the gauge field Aµ(X) lead to the Klein-Gordon equation for both the gauge fields and the currents,

∂ν∂
νAµ(X) = −

g2
2D

π
Aµ(X), and ∂ν∂

ν jµ(X) = −
g2

2D

π
jµ(X), (14)

which coincide with the Klein-Gordon equation for a boson whose square mass is m2
boson = g2

2D/π.
With the initial symmetry U(1)

⊗
SU(3), there are two modes for both the currents, and the

QCD and QED gauge fields. Therefore, there are two kind of boson masses in our case, mQED and
mQCD. As it has been said above, we consider quark situations to test our model by experimental
results [18, 19]. Characterizing the observable particle state of isospin I for the λ interaction, we
have [13, 22]

m2
λI =


N f∑
f=1

Dλ
I f Q

λ
f


2

4α
{QCD,QED}

πR2
T

+ m2
π

α
{QCD,QED}

αQCD

∑N f

f
m f (Dλ

I f
)2

mud
, (15)

where Dλ
I f

is the mixing matrix for isospin I, flavor f , and interaction λ with λ = 0 for QED and
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λ = 1 for QCD. The calculations in [13, 22] give

Experimental Mass
[I(Jπ)] mass formula Eq. (15)

(MeV) (MeV)
QCD π0 [1(0−)] 134.9768±0.0005 134.9‡

meson η [0(0−)] 547.862±0.017 498.4±39.8
η′ [0(0−)] 957.78±0.06 948.2±99.6

QED X17 [0(0−)] 16.94±0.24# 17.9±1.5
meson E38 [1(0−)] 37.38±0.71⊕ 36.4±3.8

‡ Calibration mass
# A. Krasznahorkay et al ., arxiv:2104.10075
⊕ K. Abraamyan et al ., EPJ Web Conf 204,08004(2019)

4. Conclusion

Previously, in connection with the anomalous soft photons in hadron productions [20], it was
proposed that a quark and an antiquark may be confined and bound by the QED interaction as
massive bosons (QED mesons) in the region of many tens of MeV [12]. Although the proposed
phenomenological QED-confined qq̄ composite particles are supported by experimental observa-
tions of the X17, the E38, and the anomalous soft photons [12, 13, 18, 19], lattice gauge calculations
indicate on the contrary that a static quark and a static antiquark are not confined in compact QED
in (3+1)D because they belong to the weak-coupling deconfined regime [15]. However, such de-
confined quarks and antiquarks in compact QED in (3+1)D come from theoretical lattice gauge
calculations for a static fermion charges and a static antifermion charges as applied to quarks, and
the important Schwinger’s longitudinal confinement effect for dynamical light quarks in QED [16]
has not been included.

To study the Schwinger’s confinement effect for light quarks in QED in (3+1)D, we have
constructed a “stretch (2+1)D” flux-tube model [21, 22] by starting from the action integral in
(3+1)D with both QCD and QED interactions and assuming Polyakov’s transverse confinements
in (2+1)D. The dynamics in the (3+1)D space-time can now be separated as the coupling between
the transverse (2+1)D and the longitudinal (1+1)D degrees of freedom. We solve the transverse
Landau level dynamics to obtain the transverse mass and the transverse wave functions. They enter
into the calculation of the coupling constant in the longitudinal dynamics of the idealized (1+1)D.
We then idealize the flux tube in the (3+1)D space-time as a one-dimensional string in the (1+1)D
space-time. Schwinger’s longitudinal confining solution for massless charges in QED in (1+1)D
can be applied to our problem of the quark-QED system, and by generalization to the problem of
the quark-QCD-QED system.

We find that in the stretch (2+1)D flux-tube model which possesses Schwinger’s longitudinal
confinement and Polyakov’s transverse confinement, there can be stable collective excitations of the
quark-QCD-QED systems involving either the QCD or the QED interaction, leading to stable QCD
mesons and QED mesons whose masses depend on their coupling constants. They correspond to
collective dynamics of the quark-QCD-QED medium executing motion in the color-singlet current
and the color-octet current respectively. A phenomenological analysis of the lowest-energy states
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in the flux-tube model yields agreement with the observed QCD and QED spectra, lending support
to the proposed hypotheses of QED mesons in [12, 13]. The developed approach can be used for
discovering new candidates for the dark matter representatives.
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