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The first application of a quantum algorithm to Feynman loop integrals is reviewed. The con-
nection between quantum computing and perturbative quantum field theory is feasible due to
fact that the two on-shell states of a Feynman propagator are naturally encoded in a qubit. The
particular problem to be addressed is the identification of the causal singular configurations of
multiloop Feynman diagrams. The identification of such configurations is carried out through the
implementation of a modified Grover’s quantum algorithm for querying multiple solutions over
unstructured datasets.
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1. Introduction

The main challenge in perturbative Quantum Field Theory at colliders is the computation of
multiloop scattering amplitudes. In order to face this difficult task, a novel methodology has been
developed, the loop-tree duality (LTD) [1–8] which opens any Feynman loop diagram into a sum
of connected trees. The effort to deepen in the LTD is reflected in their appealing features [9–18],
furthermore, the latest progress in this framework includes a clever reformulation which was first
presented in Ref. [19]. This result allowed to exploit its most remarkable property, the existence of
a manifestly causal representation, opening the path for a significant evolution [20–31].

The possibility to work in a causal LTD scenario, in which noncausal singularities are absent,
gives the advantage to work with more numerically stable integrands [20, 21]. To achieve a causal
LTD representation it is required to identify the causal configurations of the multiloop topology of
interest. In this presentation, we review the solution presented in Ref.[28–30] for the unfolding of
those configurations fulfilling causal conditions by the application of a modified Grover’s quantum
algorithm [32] for querying multiple solutions over unstructured databases [33]. A variational
quantum eigensolver approach has recently been presented in Ref. [34].

2. LTD framework

The LTD representation of any multiloop scattering amplitude is computed by the iterative
evaluation of the Cauchy’s residue theorem in the terms of nested residues [19, 21]. Regarding the
causal LTD expression, it is obtained by summing over all the nested residues and followed by an
ingenious rearrangement [20, 21] that allows to achieve the following causal dual form,

A (𝐿)
𝐷

=

∫
®ℓ1... ®ℓ𝐿

1
𝑥𝑛

∑︁
𝜎∈Σ

N𝜎 (𝑖1,...,𝑖𝑛−𝐿 )

𝜆
ℎ𝜎 (𝑖1 )
𝜎 (𝑖1 ) · · · 𝜆

ℎ𝜎 (𝑖𝑛−𝐿 )
𝜎 (𝑖𝑛−𝐿 )

+ (𝜆+𝑝 ↔ 𝜆−
𝑝) , (1)

where 𝑥𝑛 =
∏

𝑛 2𝑞 (+)
𝑖,0 . This expression is written in terms of causal propagators, 1/𝜆±𝑝, with

𝜆±𝑝 =
∑

𝑖∈𝑝 𝑞
(+)
𝑖,0 ± 𝑘 𝑝,0 , on-shell energies 𝑞 (+)

𝑖,0 =

√︃
q2
𝑖
+ 𝑚2

𝑖
− 𝚤0 and 𝑘 𝑝,0 a linear combination of

the energy components of external momenta. After every propagator in the set 𝑝 is set on shell, and
according the sign of 𝑘 𝑝,0, either 𝜆−

𝑝 or 𝜆+𝑝 becomes singular. The collection of entangled causal
propagators is encoded Σ, representing all combinations of compatible causal thresholds.

To work in a general context, we recall the concepts of edges and eloops [24, 25]. Edges are
defined as the union of an arbitrary number of propagators connecting two interaction vertices. The
algorithm and the implementation is presented in terms of eloops, or loops made of edges, given
that in a causality scenario the causal singular configurations only consider the setting of having all
the momentum flow of all the propagators in an edge aligned in the same direction.

3. Feynman loop integrals in a quantum computer

The feasibility of associating quantum computing and Feynman loop integrals is due to the fact
that the two on-shell states of a Feynman propagator can be stored in a qubit. The initial momentum
flow for a specific topology is represented with the state |1⟩, whereas |0⟩ encodes those states with
inverse flow orientation.
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Figure 1: Six-edge two-eloop topology (left) and its corresponding quantum circuit (right) used to bootstrap
its causal configurations.

3.1 Modified Grover’s quantum algorithm

The global structure of Grover’s quantum algorithm relies in three main components: the
uniform superposition of all possible states, an oracle and a diffuser operator. Regarding Feynman
loop integrals, the states refer to the associated configuration of the diagram. The total number
of possible configurations is 𝑁 = 2𝑛, with 𝑛 the number of edges. Additionally, the causal
configurations represent the winning states and the noncausal configurations the orthogonal states.

The uniform superposition of all the 𝑁 states is written in terms of the uniform superposition
of the causal ( |𝑤⟩ ) and noncausal ( |𝑞⊥⟩ ) states as: |𝑞⟩ = cos 𝜃 |𝑞⊥⟩ + sin 𝜃 |𝑤⟩. The mixing
angle between the causal and noncausal states is denoted by 𝜃 = arcsin

√︁
𝑟/𝑁 , with 𝑟 the number

of causal states. The oracle operator, 𝑈𝑤 , flips the state |𝑥⟩ if 𝑥 ∈ 𝑤, and does nothing otherwise;
the diffuser operator, 𝑈𝑞, amplifies the probability of these elements by performing a reflection
around the initial state |𝑞⟩. The iterative application of both operators 𝑡 times gives (𝑈𝑞𝑈𝑤)𝑡 |𝑞⟩ =
cos 𝜃𝑡 |𝑞⊥⟩ + sin 𝜃𝑡 |𝑤⟩, with 𝜃𝑡 = (2𝑡 + 1) 𝜃.

To define a proper number of iterations, 𝜃𝑡 has to fulfill that the noncausal state probabilities
are much smaller than causal state probabilities. Based on this condition, if the initial mixing angle
is less or similar to 𝜋/6, Grover’s quantum algorithm is considered a feasible framework.

Regarding the identification of causal singular configurations of multiloop Feynman diagrams,
it is known from classical [20, 21] and quantum [28] computations that in most cases they do not fit
in a favorable scenario for a direct application of Grover’s algorithm. A suitable adjustment is given
by fixing one qubit to reduce the number of causal solutions, taking advantage that given one causal
solution the mirror configuration, is also a causal solution [28–31]; if the case requires it, also the
total number of states can be increased by introducing an ancillary qubit in the |𝑞⟩ register [35].

The modified Grover’s quantum algorithm requires three registers and one extra qubit used
as a marker in the oracle. The 𝑛 edges are encoded in 𝑛 qubits 𝑞𝑖; the binary clauses compare
the orientation of two adjacent edges through 𝑐𝑖 𝑗 ≡ (𝑞𝑖 = 𝑞 𝑗) and 𝑐𝑖 𝑗 ≡ (𝑞𝑖 ≠ 𝑞 𝑗) with 𝑖, 𝑗 ∈
{0, . . . , 𝑛 − 1}, which are stored in |𝑐⟩. The loop clauses encoded in the register |𝑎⟩ combine the
qubits from |𝑐⟩ to test if any subloop configurations generate a cyclic circuit.

The structure of the algorithm takes as a first step the initialization of all the registers involved.
The qubits encoding the edges are set in a uniform superposition, |𝑞⟩ = 𝐻⊗𝑛 |0⟩; the registers |𝑎⟩,
|𝑐⟩ are set to the state |0⟩; and the Grover’s marker is set to, |𝑜𝑢𝑡0⟩ = ( |0⟩ − |1⟩) /

√
2.

The implementation of 𝑐𝑖 𝑗 needs two CNOT gates acting between 𝑞𝑖 , 𝑞 𝑗 and a qubit in |𝑐⟩.
In the case of 𝑐𝑖 𝑗 , an extra XNOT gate is used to operate on the respective qubit in |𝑐⟩. The loop

3
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Two eloops, six edges.

Figure 2: Probabilities of causal and noncausal configurations of a two-eloop topology with six edges.

clauses are set by combining binary clauses and implemented through multicontrolled Toffoli gates.
To test the causal conditions we define 𝑓 (𝑎, 𝑞). If the causal conditions are satisfied then

𝑓 (𝑎, 𝑞) = 1, if not 𝑓 (𝑎, 𝑞) = 0. The implementation of the oracle, to identify and to mark, is given
by𝑈𝑤 |𝑞⟩|𝑐⟩|𝑎⟩|𝑜𝑢𝑡0⟩ = |𝑞⟩|𝑐⟩|𝑎⟩|𝑜𝑢𝑡0 ⊗ 𝑓 (𝑎, 𝑞)⟩, where |𝑜𝑢𝑡0 ⊗ 𝑓 (𝑎, 𝑞)⟩ is −|𝑜𝑢𝑡0⟩ if 𝑞 ∈ 𝑤, and
|𝑜𝑢𝑡0⟩ if 𝑞 ∉ 𝑤. The process continues by applying the oracle operations in the inverse order. As a
final step before measuring, the amplification of the probabilities is applied by implementing 𝑈𝑞 to
|𝑞⟩. The function of the diffuser operator is taken from IBM Qiskit (https://qiskit.org/).

3.2 Two-eloop topology with six edges

The implementation of the algorithm described in the previous section is illustrated with the
two-eloop topology depicted in Fig. 1 (left), consisting of six edges. From a classical computation it
is found that 𝜃 ≈ 𝜋/3, therefore, a suitable modification is required. Halving the number of solution
leads to 𝜃 ≈ 𝜋/5, which allows to implement Grover’s quantum algorithm, furthermore, under this
arrangement only one iteration is needed to achieve a desire probability amplification.

The total number of qubits required for the implementation of the algorithm is sixteen, six for
encoding the edges, six to store the binary clauses, three to test the causal conditions and the one
standing as the Grover’s oracle marker. The six-edge two-eloop diagram (Fig. 1) requires to test three
subloops: 𝑎0 = ¬ (𝑐01 ∧ 𝑐14 ∧ 𝑐45) , 𝑎1 = ¬ (𝑐01 ∧ 𝑐13 ∧ 𝑐23) and 𝑎2 = ¬ (𝑐23 ∧ 𝑐34 ∧ 𝑐45).

The Boolean condition marking the causal configurations is 𝑓 (2) (𝑞, 𝑎) = (𝑎0 ∧ 𝑎1 ∧ 𝑎2) ∧ 𝑞0,
where 𝑞0 is fixed. The quantum circuit associated to the algorithm is depicted in Fig. 1 (right),
successfully implemented in the IBM Qiskit quantum simulator qasm. The output shown in Fig. 2
successfully identifies the expected twenty three causal configurations, corresponding to the forty
six causal states when including the mirror states obtained by inverting the momentum flows.

4. Conclusions

A modified Grover’s quantum algorithm, for the identification of causal singular configuration
of multiloop Feynman integrals was described. The algorithm was illustrated with the six-edge
two-eloop topology, implemented through the quantum simulator provided by IBM Qiskit, and
successfully determined all the causal singular configurations.
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The development of this algorithm represents a relevant resource to the LTD framework,
providing an efficient procedure to search the causal singular configurations required to bootstrap
the causal LTD representation of mutiloop scattering amplitudes.
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