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We explain how integrable models can be connected to both N = 2 supersymmetric gauge theory
and black hole perturbation theory. This important fact relies on the analysis of the connection
coefficients of the differential equations which all this theories happen to share. In particular
we prove that quasinormal modes of black holes are given by quantisation conditions on gauge
periods or, equivalently, integrability 𝑄 functions. Besides, this allows us to find a new efficient
method to characterise both analytically and numerically the quasinormal modes: analytically, we
shed light on the gauge theory application; numerically, we compare it with other methods. For
simplicity and limits of space we restrict the discussion to the simplest case of Liouville integrable
model/pure 𝑆𝑈 (2) gauge theory/D3 brane gravitation background triad.
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1. Introduction

In the last few years, gravitational waves detections have opened the doors for new gravitational
phenomenology. A black hole (BH) collision can be divided in three phases: inspiral, merger and
ringdown. The quasinormal modes (QNMs) are responsible for the damped oscillations appearing
in the ringdown phase. General relativity (GR) BHs present fundamental theoretical problems
(for instance, the information paradox). Also to solve such problems, theoretical models of Exotic
Compact Objects (ECOs) in alternative theories of gravity have been developed. They differ from
GR black holes in the sense that they have horizon scale structure. For subtype of ECOs, called
Clean Photosphere Objects (ClePhOs), the later stage ringdown signal shows a peculiar train of
echoes, with significant deviations from GR. An example of ClePhoS are fuzzballs in String Theory,
with neither horizon nor central singularity and which may solve also the information paradox.
Thus, thanks to gravitational wave astronomy, we can fully scientifically investigate whether real
astrophysical black holes (BHs) show deviations from GR. [1–3].

To achieve this, also theoretical developments are highly desirable. Especially the research
fields of integrability and extended supersymmetric gauge theory could yield a new non-perturbative
understanding of some aspects of black hole physics. Indeed, computing QNMs numerically has
been until now typically quite laborious and this has been also due to the difficulties in developing
exact analytic characterizations of QNMs. In this direction, a significant improvement has been
realized very recently as QNMs have been identified by exact quantization conditions on dual
periods of some N = 2 supersymmetric gauge, i.e. deformed Seiberg-Witten (SW), theories [4–6].
On the latter we have in fact some exact control and then this SW-QNM correspondence has given
some new theoretical and computational results for BHs and other spacetime geometries [7].

In section 2 we show how to construct a triple correspondence - a triality - among integrable
models, N = 2 supersymmetric gauge theory and black hole perturbation theory. We do this
by analysing closely the Ordinary Differential Equations (ODEs) describing the perturbations in
gravitational physics, through an elegant and effective extension of the original ODE/IM correspon-
dence between ODEs and Integrable Models (IM) [8, 9]. For limits of space, we only deal with
the simplest case, the Liouville integrable model/pure 𝑆𝑈 (2) gauge theory/D3 brane gravitation
background triad. So we prove that QNMs are nothing but the zeros of the 𝑄 function (Bethe
roots) and then find an entirely new set of functional equations for them (in particular quantization
conditions). This yields also an explanation of the SW-QNM correspondence. Then from this
integrability set up in section 3, we find a non-linear integral equation, the Thermodynamic Bethe
Ansatz (TBA) one, which turns out to be a very simple and powerful way to compute QNMs and
which we compare with other methods. For further details, explanations, extensions and general
validity of the method, we refer to our recent papers [10–14].

2. Integrability, supersymmetric gauge theory and black holes physics

The D3 brance gravitational background has line element

𝑑𝑠2 = 𝐻 (𝑟)− 1
2 (−𝑑𝑡2 + 𝑑x2) + 𝐻 (𝑟) 1

2 (𝑑𝑟2 + 𝑟2𝑑Ω2
5) , (1)

where x are the longitudinal coordinates, 𝐻 (𝑟) = 1 + 𝐿4/𝑟4and 𝑑Ω2
5 denotes the metric of the

transverse round 𝑆5-sphere [2]. The ODE which governs the scalar field perturbation of the D3
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brane is [2]
𝑑2

𝑑𝑟2 𝜙(𝑟) +
[
𝜔2

(
1 + 𝐿4

𝑟4

)
−

(𝑙 + 2)2 − 1
4

𝑟2

]
𝜙(𝑟) = 0 . (2)

where 𝜔 is the QNM frequency and 𝑙 ∈ N. Upon the change of variables

𝑟 = 𝐿𝑒
𝑦

2 𝜔𝐿 = −2𝑖𝑒𝜃 𝑃 =
1
2
(𝑙 + 2) 𝜙(𝑟) = 𝑒

𝑦

4 𝜓(𝑦) , (3)

the equation reduces to the generalized Mathieu equation [2]

− 𝑑2

𝑑𝑦2𝜓(𝑦) +
[
2𝑒2𝜃 cosh 𝑦 + 𝑃2] 𝜓(𝑦) = 0 . (4)

As IM it corresponds to the conformal self-dual Liouville theory (central charge 𝑐 = 25) with
momentum 𝑃 and rapidity 𝜃, besides as gauge theory it corresponds to N = 2 𝑆𝑈 (2) pure (𝑁 𝑓 = 0)
theory with Omega background 𝜖2 → 0, 𝜖1 = ℏ (Nekrasov-Shatashvili limit [6]): for the latter this
change of parameters is needed 𝜔𝐿 = −2𝑖Λ0

ℏ
, 1

8 (𝑙 + 2)2 = 𝑢

ℏ2 , where 𝑢 is the Coulomb branch
modulus and Λ0 the instanton coupling, so that [10]

−ℏ
2

2
𝑑2

𝑑𝑦2𝜓(𝑦) + [Λ2
0 cosh 𝑦 + 𝑢]𝜓(𝑦) = 0 . (5)

Now, we develop the ODE/IM procedure for this simple model summarizing the procedure of [10].
The regular solutions at 𝑦 → ±∞ are determined by

𝜓±,0(𝑦) ' 2−
1
2 𝑒−

1
2 𝜃∓

1
4 𝑦𝑒−𝑒

𝜃±𝑦/2
, 𝑦 → ±∞ . (6)

Equation (4) enjoys the discrete symmetries

Ω± : 𝑦 → 𝑦 ± 𝑖𝜋 , 𝜃 → 𝜃 + 𝑖𝜋/2 , 𝑃 → 𝑃 . (7)

Thanks to these symmetries, one can define other independent solutions 𝜓−,𝑘 = Ω𝑘
−𝜓−,0 ,

𝜓+,𝑘 = Ω𝑘
+𝜓+,0, and has these invariance properties Ω𝑘

+𝜓−,0 = 𝜓−,0 , Ω𝑘
−𝜓+,0 = 𝜓+,0. These

solutions are normalized so that their wronskians are 𝑊 [𝜓−,𝑘+1, 𝜓−,𝑘] = −𝑖, 𝑊 [𝜓+,𝑘+1, 𝜓+,𝑘] = 𝑖.
In general in the ODE/IM method the 𝑄 function is defined as the wronskian of two regular

solutions 𝜓+,0, 𝜓−,0 at different singular points 𝑦 → ±∞:

𝑄(𝜃, 𝑃) = 𝑊 [𝜓+,0, 𝜓−,0] (𝜃, 𝑃) . (8)

By the properties of wronskians, we can write the linear central connection relations as

𝑖𝜓−,0 = 𝑄(𝜃 + 𝑖𝜋/2)𝜓+,0 −𝑄(𝜃)𝜓+,1 𝑖𝜓−,1 = 𝑄(𝜃 + 𝑖𝜋)𝜓+,0 −𝑄(𝜃 + 𝑖𝜋/2)𝜓+,1 (9)

and taking their wronskian we obtain the 𝑄𝑄 system

𝑄(𝜃 + 𝑖𝜋/2)𝑄(𝜃 − 𝑖𝜋/2) = 1 +𝑄(𝜃)2 , (10)

from which we can derive all the theory. Here and in the following we can omit the dependence
on 𝑃 as it stays fixed. As crucially noted in [13], the QNMs are defined as the zeroes of the same
Wronksian (8) [15], namely the Bethe roots

𝑄(𝜃𝑛) = 0 . (11)
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The ODE/IM construction goes further because the presence of the irregular singularity of (4)
at 𝑦 → ±∞ allow us to define 𝑇 function (Stokes coefficient) as

𝑇 (𝜃) = −𝑖𝑊 [𝜓−,−1, 𝜓−,1] (𝜃, 𝑃) . (12)

Then from the lateral connection relation expressing 𝜓±,1 it terms of of 𝜓±,0 and 𝜓±,−1 we find

𝑇 (𝜃)𝑄(𝜃) = 𝑄(𝜃 − 𝑖𝜋/2) +𝑄(𝜃 + 𝑖𝜋/2) , (13)

that is called 𝑇𝑄 relation. Now, within our set-up of functional and integral equations for entire
functions in 𝜃 (integrability), we can find other quantization conditions on the roots 𝜃𝑛 (QNMs). the
𝑇𝑄 relation (13) means 𝑄(𝜃𝑛 − 𝑖𝜋/2) + 𝑄(𝜃𝑛 + 𝑖𝜋/2) = 0. This and the 𝑄𝑄 relation (10) actually
fixes 𝑄(𝜃𝑛 + 𝑖𝜋/2)𝑄(𝜃𝑛 − 𝑖𝜋/2) = 1 and then it is also fixed

𝑄(𝜃𝑛 ± 𝑖𝜋/2) = ±𝑖 . (14)

Figure 1: The 𝑦 complex plane, where in blue we
show the contour of integration of regularized SW dif-
ferential P𝑟𝑒𝑔,−1 to prove the relation between 𝑎

(0)
𝐷

and
ln𝑄 (0) . In red are shown the branch cuts of P𝑟𝑒𝑔,−1.

Now we are going to prove that condi-
tion (14) is equivalent to the quantization con-
dition of the dual gauge period 𝑎𝐷

𝑎𝐷 (𝜃𝑛 + 𝑖𝜋/2,−𝑢,Λ0) =
1
2

(
𝑛 + 1

2

)
, 𝑛 ∈ N .

(15)
as found heuristically in [4]. Now (15) follows
directly from (14) and the identification [10]

𝑄(𝜃, 𝑃) = exp {2𝜋𝑖𝑎𝐷 (𝜃, 𝑢,Λ0)} . (16)

We give here an idea of how to prove this relation by considering the leading 𝜃 → +∞ (or ℏ → 0,
Seiberg-Witten) order. Now as explained in [10] on one hand 𝑎

(0)
𝐷

is the following integral for the
leading order P−1 = −𝑖Λ0

√︃
2 cosh 𝑦′ + 2 𝑢

Λ2
0

of the quantum momentum, called SW differential

𝑎
(0)
𝐷

(𝑢,Λ0) =
1

2𝜋

∫ 𝑖 𝜋+𝑖 arccos (𝑢/Λ2
0)+0+

𝑖 𝜋−𝑖 arccos (𝑢/Λ2
0)+0+

𝑖P−1(𝑦; 𝑢,Λ0) 𝑑𝑦 . (17)

On the other hand the leading order of ln𝑄 is an integral of the same object for 𝑦 from −∞ to +∞,
but with a regularization. Since, in the limits 𝑦 → ±∞, we have P−1 = −𝑖Λ0

ℏ
𝑒±𝑦/2 + 𝑂 (𝑒∓𝑦/2), it

follows that this is (cf. [10])

ln𝑄 (0) (𝑢,Λ0) =
∫ ∞

−∞
𝑖P𝑟𝑒𝑔,−1(𝑦) 𝑑𝑦 = Λ0

∫ ∞

−∞

[√︄
2 cosh 𝑦 + 2

𝑢

Λ2
0
− 2 cosh

𝑦

2

]
𝑑𝑦 . (18)

Assuming 𝑢 < Λ2
0, let us consider the integral of 𝑖P𝑟𝑒𝑔,−1(𝑦) on the (oriented) closed curve

𝛾 = 𝛾1 ∪ 𝛾2 ∪ 𝛾3 ∪ 𝛾4 ∪ 𝛾5 which runs along the real axis, slightly below the cut and closes laterally,
as depicted in 1. It turns out that the integrals on 𝛾2 and 𝛾5 cancel each other (cf. [10]). In the
integrals on 𝛾3 and 𝛾4 there is no contribution from the regularizing part, which has no cut. Besides,
by antisymmetry symmetry of P−1(𝑦) its integral on 𝛾4 = (𝑖𝜋 − 𝑖 arccos (𝑢/Λ2

0) + 0−, 𝑖𝜋 + 0−) is

4
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equal to the integral on the integral on (𝑖𝜋 + 0+, 𝑖𝜋 + 𝑖 arccos (𝑢/Λ2
0) + 0+). So by Cauchy theorem

the integral on all 𝛾 is zero and we find the relation∫ +∞

−∞
𝑖P𝑟𝑒𝑔,−1(𝑦) 𝑑𝑦 =

1
2𝜋

∫ 𝑖 𝜋+𝑖 arccos (𝑢/Λ2
0)+0+

𝑖 𝜋−𝑖 arccos (𝑢/Λ2
0)+0+

𝑖P−1(𝑦; 𝑢,Λ0) 𝑑𝑦 ,

ln𝑄 (0) (𝑢,Λ0) = 2𝜋𝑖𝑎 (0)
𝐷

(𝑢,Λ0) ,
(19)

which is the leading order version (16). The exact proof is similar and its details can be found
in [10] and that proves (15) (notice 𝑢 → −𝑢 as 𝜃 → 𝜃 + 𝑖𝜋/2 since 𝑃 is fixed) [13, 14].

3. A new method of computation of quasinormal modes

Now we can use our connection among integrability, gauge and black hole theories to derive a
new numerical method of computation of QNMs. To this end, let us now define the 𝑌 function as
𝑌 (𝜃, 𝑃) = 𝑄2(𝜃, 𝑃) and derive from (10) the 𝑌 -system

𝑌 (𝜃 + 𝑖𝜋/2)𝑌 (𝜃 − 𝑖𝜋/2) =
(
1 + 𝑌 (𝜃)

)2
. (20)

Eventually, we solve it explicitly (up to quadratures) via a Thermodynamic Bethe Ansatz (TBA)
integral equation for the pseudoenergy 𝜀(𝜃) = − ln𝑌 (𝜃):

𝜀(𝜃) = 16
√
𝜋3

Γ( 1
4 )2

𝑒𝜃 − 2
∫ ∞

−∞

ln [1 + exp{−𝜀(𝜃 ′)}]
cosh(𝜃 − 𝜃 ′)

𝑑𝜃 ′

2𝜋
. (21)

𝑛 𝑙 TBA Leaver
0 0 1.36912 − 0.504048𝑖 1.36972 − 0.504311𝑖
0 1 2.09118 − 0.501788𝑖 2.09176 − 0.501811𝑖
0 2 2.8057 − 0.501009𝑖 2.80629 − 0.501000𝑖
0 3 3.51723 − 0.500649𝑖 3.51783 − 0.500634𝑖
0 4 4.22728 − 0.500453𝑖 4.22790 − 0.500438𝑖

Table 1: Comparison of QNMs of the D3 brane from TBA (21)
(through (22) with 𝑛 = 0), Leaver method (with 𝐿 = 1).

In this 𝑃 does not appear explicitly, but
fixes the solution by its asymptotic lin-
ear behaviour 𝜀(𝜃, 𝑃) ' +8𝑃𝜃, 𝑃 > 0,
at 𝜃 → −∞. Eventually, the 𝑄𝑄 sys-
tem (10) characterizes the QNMs as
𝑌 (𝜃𝑛 − 𝑖𝜋/2) = −1, i.e. the TBA quan-
tization condition

𝜀(𝜃𝑛−𝑖𝜋/2) = −𝑖𝜋(2𝑛+1) , 𝑛 ∈ Z
(22)

which can be easily implemented by us-
ing the TBA (21) as table 1 shows. These values match very well with those obtained by the standard
method of continued fractions by Leaver [13, 16].

Let us conclude with a comparison of computation methods for QNMs. The standard analytic
method is the one with the continued fractions by Leaver and is typically quite laborious. We found
it to be not always applicable in its original form even if there is a further development, the so-called
matrix Leaver method, which is still applicable [17]. Application of N = 2 gauge theory is a new
interesting analytic characterization of QNMs. In particular in this method the computation of 𝑎𝐷
in [4] relies on the expansion of the prepotential F in powers (number of instantons) of Λ4

0 [18]:
the period 𝑎 is related to the moduli parameter 𝑢 through the Matone’s relation [19, 20]. In this
respect, only the first instanton contributions are easily accessible and summing them up is accurate
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as long as |Λ0 |/ℏ � 1. Thus, this makes hard to access QNMs values |Λ0,𝑛 |/ℏ � 1 as in table 1.
On the contrary, our new method through TBA automatically resums all instantons. It is naturally
derived by extending the ODE/IM correspondence, and it seems so far extendible to more general
cases [13, 14].
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