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The QCD topological observables are essential inputs to obtain theoretical predictions about axion
phenomenology, which are of utmost importance for current and future experimental searches for
this particle. Among them, we focus on the topological susceptibility, related to the axion mass.
We present lattice results for the topological susceptibility in QCD at high temperatures obtained by
discretizing this observable via spectral projectors on eigenmodes of the staggered Dirac operator,
and we compare them with those obtained with the standard gluonic definition. The adoption of
the spectral discretization is motivated by the large lattice artifacts affecting the standard gluonic
susceptibility, related to the choice of non-chiral fermions in the lattice action.
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1. Introduction

General theoretical arguments predict that QCD allows for violations of the CP symmetry via
the dimensionless parameter 𝜃 coupling the integer-valued topological charge

𝑄 =
1

32𝜋2 𝜀𝜇𝜈𝜌𝜎

∫
Tr{𝐺𝜇𝜈 (𝑥)𝐺𝜌𝜎 (𝑥)}𝑑4𝑥 ∈ Z, (1)

to the QCD action, with 𝐺𝜇𝜈 the gluon field-strength tensor. So far, no experimental evidence
of strong CP violation has ever been found, suggesting that 𝜃 is actually vanishing; in particular,
the most precise experimental upper bound on the neutron electric dipole moment reflects in the
stringent upper bound |𝜃 | . 𝑂 (10−9, 10−10). This fine-tuning issue is known as strong CP problem
and is currently one of the most intriguing questions left open by the Standard Model.

Among the many Beyond Standard Model solutions that have been considered in the literature,
the Peccei–Quinn axion [1] is one of the most promising. This hypothetical particle dynamically
relaxes 𝜃 to zero thanks to the properties of the Peccei–Quinn symmetry, and is at the same time a
possible Dark Matter candidate.

An interesting theoretical feature of axion models is that the knowledge of the QCD topological
susceptibility 𝜒 ≡ 〈𝑄2〉 /𝑉 , with 𝑉 the space-time volume, allows to put upper bounds on the scale
𝑓𝑎 at which the Peccei–Quinn symmetry spontaneously breaks, via the relation 𝑚2

𝑎 𝑓
2
𝑎 = 𝜒, with

𝑚𝑎 the effective axion mass. This is a piece of information of the utmost importance, being it a
necessary input for current and future experimental searches for axions. More precisely, for the
purpose of axion cosmology, what is needed is the behavior of 𝜒 for high values of the temperature
𝑇 (corresponding to early times of the Universe evolution).

In recent years, Monte Carlo simulations on the lattice have been extensively employed to
compute 𝜒(𝑇), being topological properties purely non-perturbative features of gauge theories.
The lattice computation of the topological susceptibility in the deconfined phase poses however
several non-trivial numerical challenges. In this paper we are concerned in particular with the
problem of suppressing the large lattice artifacts that affect the computation of 𝜒 at finite lattice
spacing 𝑎 via standard methods [2–4]. Achieving such a reduction is useful to perform more reliable
extrapolations of this quantity towards the continuum limit 𝑎 → 0, especially at high 𝑇 .

In this respect, a recent proposal involves the adoption of spectral projectors [5–8] over the
eigenvectors of the Dirac operator /𝐷 to define the topological charge. Such definition relies on
the index theorem, which relates 𝑄 to the spectral properties of the low-lying eigenvalues of /𝐷,
and has proven to be effective in reducing the magnitude of finite-lattice-spacing corrections to the
continuum limit of 𝜒 at zero temperature [8].

This paper reports on the main results of Ref. [9]. In this work, spectral projectors in the
presence of staggered quarks [10] are employed to provide controlled continuum extrapolations of
𝜒 in high-𝑇 QCD at the physical point for a range of temperatures going from ∼ 200 to ∼ 600 MeV.
The main results of [9] have also been presented during this year’s LATTICE conference [11].

This manuscript is organized as follows: in Sec. 2 we summarize the main aspects regarding
the staggered fermion spectral projectors approach; in Sec. 3 we present our results for the QCD
topological susceptibility at high temperature; finally, in Sec. 4 we draw our conclusions.
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2. Numerical setup

We discretize QCD at finite temperature 𝑇 = (𝑎𝑁𝑡 )−1 on a 𝑁𝑡 × 𝑁3
𝑠 lattice with lattice spacing

𝑎 using the tree level Symanzik-improved gauge action for the gluon sector and 2 + 1 flavors of
rooted stout staggered fermions for the quark one. The continuum limit is approached along a Line
of Constant Physics (LCP), meaning that the bare coupling 𝛽 and the bare quark masses 𝑚𝑙, 𝑚𝑠

are tuned to ensure that simulations at each lattice spacing are carried on at the physical point,
i.e., for physical pion mass 𝑚𝜋 ' 135 MeV and for physical strange-to-light quark mass ratio
𝑚𝑠/𝑚𝑙 ' 28.15.

Topological charge (1) is defined on the lattice via staggered spectral projectors. According to
the index theorem, only zero-modes (i.e., with non-vanishing chiralities) contribute to𝑄. Staggered
quarks however explicit break the chiral symmetry for non-vanishing 𝑎, and no zero-mode is present
in the spectrum of 𝐷stag. Thus, the sum over the chiralities of zero-modes has to be extended at
finite lattice spacing as [10]:

𝑄 =
∑︁
𝜆=0

𝑢
†
𝜆
𝛾5𝑢𝜆 −→ 𝑄SP,0 =

1
𝑛𝑡

∑︁
|𝜆 | ≤𝑀

𝑢
†
𝜆
𝛾
(stag)
5 𝑢𝜆, (2)

where𝑄SP,0 is the bare spectral projectors charge, 𝛾 (stag)
5 is the staggered version of the Dirac matrix

𝛾5, the factor 1/𝑛𝑡 = 1/4 cancels out staggered taste degeneration. The eigenvectors 𝑢𝜆 satisfy

𝑖𝐷stag𝑢𝜆 = 𝜆𝑢𝜆, 𝜆 ∈ R, (3)

with 𝐷stag matching the same discretization of the lattice action, mentioned at the beginning of this
section. The bare spectral projectors charge is renormalized as [10]:

𝑄SP = 𝑍
(stag)
𝑄

𝑄SP,0, 𝑍
(stag)
𝑄

=

√√√ 〈Tr {P𝑀 }〉

〈Tr
{
𝛾
(stag)
5 P𝑀𝛾

(stag)
5 P𝑀

}
〉
, (4)

where P𝑀 ≡ ∑
|𝜆 | ≤𝑀 𝑢𝜆𝑢

†
𝜆

is the staggered spectral projector over eigenvectors with eigenvalues
lying below 𝑀 . The topological susceptibility is finally given by 𝜒SP ≡ 〈𝑄2

SP〉 /𝑉 , where 𝑉 =

𝑎4𝑁𝑡𝑁
3
𝑠 is the lattice volume in physical units.

The threshold mass 𝑀 cutting-off spectral sums is a free parameter of this definition, as its
particular value becomes irrelevant in the continuum limit, where chiral symmetry is restored and
only zero-modes contribute to𝑄. However, a prescription to keep its renormalized value in physical
units constant as the continuum limit is approached is needed to guarantee 𝑂 (𝑎2) corrections to the
continuum value 𝜒:

𝜒SP(𝑎, 𝑀) = 𝜒 + 𝑐(𝑀𝑅)𝑎2 + 𝑜(𝑎2). (5)

Staggered quarks allow to adopt this simple prescription: since 𝑀 renormalizes as a quark mass 𝑚 𝑓 ,
and since the continuum limit is approached along a LCP, it is sufficient to keep 𝑀/𝑚 𝑓 = 𝑀𝑅/𝑚 (𝑅)

𝑓

constant along the LCP for any given flavor 𝑓 to ensure that the continuum limit is approached at
constant 𝑀𝑅. In the following we will express 𝑀 in terms of the strange quark mass 𝑚𝑠.
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3. Results

In Fig. 1 we show an example of continuum extrapolation of 𝜒SP for a temperature 𝑇 '
430 MeV. Our spectral results for 2 choices of 𝑀/𝑚𝑠 are compared with the gluonic determination
𝜒gluo = 〈𝑄2

gluo〉 /𝑉 , where 𝑄gluo is obtained computing the clover discretization of Eq. (1)

𝑄clov =
−1

29𝜋2

∑︁
𝑥

±4∑︁
𝜇𝜈𝜌𝜎=±1

𝜀𝜇𝜈𝜌𝜎Tr
{
Π𝜇𝜈 (𝑥)Π𝜌𝜎 (𝑥)

}
, (6)

with Π𝜇𝜈 (𝑥) is the plaquettes built on the 𝜇 − 𝜈 plane and rooted in the lattice site 𝑥, on cooled
configurations after 𝑛cool = 80 steps, and rounding it to the nearest integer as:

𝑄gluo = round
{
𝛼𝑄

(cool)
clov

}
, 𝛼 = min

𝑥>1

〈(
𝑥𝑄

(cool)
clov − round

{
𝑥𝑄

(cool)
clov

})2
〉
. (7)

In Fig. 1 we also report the results of Refs. [3, 4]. We observe that it is possible to reduce lattice
artifacts with a suitable choice of 𝑀 , and that continuum extrapolations of 𝜒SP for different 𝑀/𝑚𝑠

agree within the errors. Spectral determinations are also compatible with 𝜒gluo and with the results
of Refs. [3, 4].
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Figure 1: Figure taken from Ref. [9]. Comparison of continuum extrapolations of 𝜒1/4
SP determinations for

two choices of 𝑀/𝑚𝑠 (squares and triangles) with the extrapolation of 𝜒1/4
gluo (circles) and the results for 𝜒1/4

of Refs. [3, 4] (dotted and dashed shaded areas). Figure refers to 𝑇 ' 430 MeV.

Our continuum extrapolations of 𝜒SP and 𝜒gluo for all the explored temperatures are shown in
Fig. 2, along with results of Refs. [3, 4]. Error bars of 𝜒SP data here reported are estimated keeping
into account any systematic variation observed in the continuum extrapolation when changing
𝑀/𝑚𝑠 within a reasonable range (see Ref. [9] for an extensive discussion on this point).

Both our spectral and gluonic data can be well described with a decaying power law 𝜒1/4 ∼
(𝑇/𝑇𝑐)−𝑏, with 𝑇𝑐 ' 155 MeV the crossover temperature, in agreement with the Dilute Instanton
Gas Approximation (DIGA) prediction [12], cf. Fig. 2. Exponents also agree very well with the
prediction 𝑏DIGA = 2:

𝑏SP = 1.82(43), 𝑏gluo = 1.67(51), fit for 𝑇 ≥ 230 MeV;

𝑏SP = 2.63(81), 𝑏gluo = 2.3(1.1), fit for 𝑇 ≥ 300 MeV.
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However, we observe that the DIGA-like power law seems to set in for higher values of 𝑇 compared
to findings of Ref. [3]. Moreover, we observe that our results lie systematically above those of
Refs. [3, 4], and in particular we observe respectively ∼ 3 and ∼ 2.5 standard deviation tensions
among our and Refs. [3, 4]’s determinations in the range 300 . 𝑇 . 365 MeV, see Fig. 2.

1 2 3 4
T/Tc

1

20

40

60
80
100

χ
1/
4
[M

eV
]

Petreczky et al., 2016

Gluonic

Spectral Projectors

Borsanyi et al., 2016

1 2 3 4
T/Tc

1

20

40

60
80
100

χ
1/
4
[M

eV
]

Petreczky et al., 2016

Gluonic

Spectral Projectors

Borsanyi et al., 2016

Figure 2: Figures taken from Ref. [9]. Behavior of 𝜒1/4
SP (squares) and 𝜒

1/4
gluo (diamonds) as a function of𝑇/𝑇𝑐

in log-log scale, compared with results of [3] (stars) and of [4] (shaded area). Dashed, solid and dotted lines
represent best fits of 𝜒SP, 𝜒gluo and Ref. [3] data assuming the DIGA-inspired ansatz 𝜒1/4 = 𝐴(𝑇/𝑇𝑐)−𝑏.

4. Conclusions

This paper reports on the main findings of [9]. The spectral projectors definition of the
topological susceptibility allows to improve the convergence of this quantity towards the continuum
limit, as the large lattice artifacts affecting the standard gluonic definition can be reduced by a
suitable choice of the threshold mass 𝑀 used to cut-off the spectral sums defining 𝜒SP.

Our continuum-extrapolated spectral determination of 𝜒(𝑇) is well described by a decaying
power-law 𝜒1/4(𝑇) ∼ (𝑇/𝑇𝑐)−𝑏 as predicted by the DIGA, with 𝑏 also agreeing with the prediction
𝑏DIGA = 2. We find a ∼ 2 − 3 standard deviation tension with results of Refs. [3, 4] in the range
300 MeV . 𝑇 . 365 MeV, which deserves to be better clarified with future dedicated studies.

To this end, it would be interesting to refine our determinations for 𝑇 . 400 MeV by adding
finer lattice spacings to our analyses to improve our determinations of the continuum limit of 𝜒SP. It
would also be interesting to push the present comparison towards higher temperatures, in particular
around the 𝑇 ∼ 1 GeV scale, which is also relevant for axion cosmology.

To reach higher temperatures and finer lattice spacings, however, the infamous topological
freezing problem has to be faced, as it is well known that the Critical Slowing Down experienced
by standard lattice Monte Carlo algorithms close to the continuum limit is particularly severe
for topological quantities. A promising candidate to face this problem is the parallel tempering
on boundary conditions algorithm proposed by M. Hasenbusch for 2𝑑 CP𝑁−1 models [13] and
recently adopted both in the latter case [14] and in purely-gluonic 4𝑑 Yang–Mills theories [15, 16]
to efficiently mitigate the topological freezing issue.
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