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We consider the lattice models based on affine algebras described by Jimbo et al., for the algebras
𝐴𝐵𝐶𝐷 and by Kuniba et al. for 𝐺2. We find a general formula for the crossing multipliers of
these models, with the result that these crossing multipliers are given by the principally specialized
characters of the model in question. Therefore we conjecture that the crossing multipliers in a
large class of solvable interaction round the face lattice models are given by the characters of
the conformal field theory on which they are based. We also elaborate on some details of the
computation of the Local state probability of these models, conjecturing an expression for it.
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1. Introduction

Solvable lattice models in two dimensions are a fruitful ground to test phase transitions,
universality and two-dimensional condensed matter systems. For a review, see [1]. In ref. [2]
an approach to solvable Interaction Round the Face (IRF) lattice models was presented where the
lattice model itself is built out of the data of some conformal field theory and two primary fields in
this conformal field theory. On each vertex of the model sits a primary field in the theory and the
admissibility condition is given by the fusion rules. For a review of conformal field theory (CFT),
see, e.g., [3].

The solution of ref. [2] is based on the Baxterization of the braiding matrix and is a trigono-
metric solution to the Yang Baxter equation (YBE). Our aim here is to extend this solution to the
elliptic (thermalized) case. In ref. [4], the inversion relations of the general elliptical IRF model
were conjectured and based on this, the free energy was calculated in the four main regimes. Our
aim here is to conjecture the crossing relation in the elliptic case and in particular the crossing
multiplier.

In ref. [2], the crossing multiplier for the trigonometric solution was proposed to be given
by the modular matrix. We extend this result to the elliptic case by conjecturing that the crossing
multipliers are given, in general, by the characters.

We check this statement in models where the crossing multiplier is known explicitly. These
are the WZW 𝐴𝑛 models [5], the 𝐵𝐶𝐷 models [6] and the 𝐺2 model [7]. We find a general formula
for the crossing multiplier when the CFT is given by a WZW model (for a review of WZW models,
see [3, 8]). This formula asserts that the crossing multiplier is given by the principally specialized
character. This agrees with our general conjecture for the crossing multiplier. Then, we turn to
the computation of the Local state probability (LSP). There we use the expression of the crossing
multiplier given by the character and two conjectured inversion relations (specified below) to argue
that the LSP could be expressed in terms of the branching function of a coset algebra.

2. The IRF models and their crossing relations

We define the IRF lattice models based on some rational conformal field theory (RCFT), O,
and a pair of primary fields in this RCFT denoted by ℎ and 𝑣 [2]. The model is denoted accordingly
by IRF(O, ℎ, 𝑣). For simplicity, we assume that ℎ = 𝑣. We define the models on a square lattice,
where on each vertex sits some primary field. We assume that the face Boltzmann weight vanishes
unless the admissibility condition is obeyed, which is,

𝑓 𝑏𝑎,ℎ > 0, 𝑓 𝑑𝑐,ℎ > 0, 𝑓 𝑐𝑎,ℎ > 0, 𝑓 𝑑𝑏,ℎ > 0, (1)

where 𝑎, 𝑏, 𝑐, 𝑑 are the four primary fields sitting on a face and 𝑓 𝑧𝑥,𝑦 is the fusion coefficient in the
RCFT O. For an explanation of these notions see e.g. [2, 3]. The partition function of the model is

𝑍 =
∑︁

configurations

∏
faces

𝜔

(
𝑎 𝑏

𝑐 𝑑

����𝑢) , (2)

where 𝜔 is the Boltzmann weight, and 𝑢 is the spectral parameter.
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We wish to define the Boltzmann weight 𝜔 in such a way that the model will be solvable.
Namely, that the transfer matrices will commute for different spectral parameters. This is guaranteed
by the Yang–Baxter equation (YBE), see, e.g., [1]. It is simpler to define this equation in operator
form. For this, we define the operator,

< 𝑎1, 𝑎2, . . . , 𝑎𝑛 |𝑅𝑖 (𝑢) |𝑎′1, 𝑎
′
2, . . . , 𝑎

′
𝑛 >= 𝜔

(
𝑎𝑖−1 𝑎𝑖

𝑎′
𝑖

𝑎𝑖+1

����𝑢) 𝑛∏
𝑚=1
𝑚≠𝑖

𝛿𝑎𝑚,𝑎′
𝑚
. (3)

Then the YBE assumes the form,

𝑅𝑖+1(𝑢)𝑅𝑖 (𝑢 + 𝑣)𝑅𝑖+1(𝑣) = 𝑅𝑖 (𝑣)𝑅𝑖+1(𝑢 + 𝑣)𝑅𝑖 (𝑢). (4)

We utilize a trigonometric solution of the YBE, conjecturally, for any RCFT O and for any ℎ

and 𝑣, provided that the fusion coefficients of ℎ and 𝑣 are zero or one [2]. This solution is obtained
by a Baxterization of the braiding matrix of ℎ with 𝑣; we shall not need here the explicit solution.
For details of the braiding matrix refer to [9]. Our focus will be on the crossing relation. This is
given by

𝑅ℎ,ℎ̄

(
𝑑 𝑐

𝑎 𝑏

)
(𝑢) =

(
𝜓𝑎𝜓𝑐

𝜓𝑏𝜓𝑑

)1/2
𝑅ℎ,ℎ

(
𝑎 𝑑

𝑏 𝑐

)
(𝑙 − 𝑢), (5)

where 𝑙 is the crossing parameter given by

𝑙 = 𝜋Δadjoint/2, (6)

where Δadjoint is the conformal dimension of the adjoint representation (assuming a WZW model
or similar, see e.g. [3].) Generally, it is the conformal dimension of the lowest field in the fusion
product of ℎ and ℎ̄. We denoted by 𝑅ℎ,ℎ̄ and 𝑅ℎ,ℎ the trigonometric solution of the YBE based on
the braiding of ℎ with ℎ̄, or ℎ with ℎ, respectively.

The 𝜓𝑎 in eq. (5) are called the crossing multipliers. These are given, conjecturally, by [2]

𝜓𝑎 =
𝑆𝑎,0

𝑆0,0
, (7)

where 𝑆𝑎,𝑏 is the matrix of modular transformation for the primary fields 𝑎 and 𝑏, and 0 denotes
the unit primary field. For an explanation of these notions, see, e.g., [3].

We wish to describe the crossing relation for the elliptic solution of the YBE. Roughly, this is
given by replacing sin 𝑢 in the trigonometric solution with the theta function

\1(𝑢, 𝑞) = 2𝑞1/8 sin 𝑢
∞∏
𝑛=1

(1 − 2𝑞𝑛 cos 2𝑢 + 𝑞2𝑛) (1 − 𝑞𝑛), (8)

where 𝑞 is some parameter 0 < 𝑞 < 1, called the elliptic modulus. We call this, a thermalization of
the IRF model.

Our wish is to conjecture the thermalization of the crossing relation. The thermal crossing
relation remains the same as in eq. (5), except that we need to change the crossing multiplier. It is
given by

𝜓𝑡
𝑎 = 𝜒𝑎 ((𝑞′)𝛼)/𝜒0((𝑞′)𝛼), (9)
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where 𝜒𝑎 is the character in the RCFT O of the primary field 𝑎, defined as

𝜒𝑎 (𝑞) =
∑︁
H𝑎

𝑞Δ−𝑐/24, (10)

where H𝑎 is the representation with the highest weight 𝑎 and Δ is the dimension of the fields in this
representation and 𝑐 is the central charge. Since we will be considering ratios of characters, we can
ignore the factor of 𝑐 1. We define 𝑞 = exp(2𝜋𝑖𝜏) and its modular transformation 𝑞′ = exp(−2𝜋𝑖/𝜏).
Here 𝛼 is some exponent, which we will specify later.

We wish to show that in the critical limit 𝑞 → 0+, the thermalized crossing multiplier becomes
the critical crossing multiplier, 𝜓𝑎, eq. (7). In this limit, it is clear that 𝑞′ → 1−. Then, using a
modular transformation,

𝜒𝑎 (1) =
∑︁
𝑏

𝑆𝑎,𝑏𝜒𝑏 (0) = 𝑆𝑎,0, (11)

since 𝜒𝑏 (0) = 𝛿𝑎,𝑏. Thus we find

lim
𝑞→0

𝜓𝑡
𝑎 (𝑞) = 𝑆𝑎,0/𝑆0,0 = 𝜓𝑎, (12)

which is the desired relation.
The thermalized crossing relation, eqs. (5, 9) was established before in explicit IRF models,

such as, the 𝐴𝑛 height models of Jimbo et al. [5], the 𝐵𝐶𝐷 height models [6] and the 𝐺2 models
by Kuniba et al. [7, 12, 13]. These models correspond in our language to IRF(O, ℎ, ℎ) where the
RCFT O is a WZW model based on the algebras 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, and 𝐺2, respectively and the
primary field ℎ is the fundamental for 𝐴𝑛, the vector for 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 and the 7 representation for 𝐺2.
In all these examples, the crossing multiplier can be summarized neatly by the formula

𝜓𝑡
𝑎 (𝑞) = 𝐶

∏
𝛼∈

𝑜

Δ+

\1
©«𝜋(

𝑜

_𝑎 +
𝑜
𝜌, 𝛼)

𝑘 + 𝑔
, 𝑞

ª®¬ , (13)

where
𝑜

_𝑎 is the finite counterpart of the highest weight of the representation 𝑎, 𝑜
𝜌 is half the sum

of finite positive roots (also known as the finite counterpart of the Weyl vector 𝜌),
𝑜

Δ+ are the finite
positive roots of the algebra and the product (., .) denotes the product of two weights. 𝑘 is the level
of the WZW model, and 𝑔 is the dual Coxeter number. 𝐶 is an irrelevant constant. We conjecture
that this formula, eq. (13), holds for all the WZW models IRF’s even though it has not been worked
out in detail for 𝐹4 and 𝐸𝑛 algebras.

We wish to make a connection between the formula for the crossing multiplier for WZW
models for the group 𝐺, eq. (13) and the general formula eq. (9). We prove that (for details of the
proof see [10]) 𝜓𝑡

𝑎 (𝑞) is given by

𝜓𝑡
𝑎 (𝑞) =

∏
𝛼∈

𝑜

Δ+

\1
©«𝜋(

𝑜

_𝑎 +
𝑜
𝜌, 𝛼)

𝑘 + 𝑔
, 𝑞

ª®¬ = 𝜒𝑎 ((𝑞′)𝑔/(𝑘+𝑔) ), (14)

1Actually, as we will see, we need to take the principal gradation in affine models, rather than the basic gradation as
in eq. (10). This does not change the subsequent discussion. For the exact definition of the character in the principal
gradation (or principally specialized character) see [10] or chapter 10 of [11].
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where 𝜒𝑎 (𝑞) is the principally graded character (also called principally specialized character) of
the affine algebra �̂� with the highest weight _𝑎 (its finite part is

𝑜

_𝑎). Thus, we prove for WZW
models eq. (9) with the exponent2 𝛼 = Δadjoint = 𝑔/(𝑘 + 𝑔).

3. Local state probability

We now turn to the calculation of the Local state probability. This is the probability 𝑃(𝑎 |𝑏, 𝑐)
to find at the origin of the lattice (central vertex) some primary field 𝑎, given some boundary values
𝑏, 𝑐 (which are taken to be in the ground state values), i.e.,

𝑃(𝑎 |𝑏, 𝑐) = 𝑍𝑎

𝑍
, (15)

where 𝑍𝑎 is the partition function (2) that takes into account only those configurations which have
at the origin of the lattice the value 𝑎. Baxter’s corner transfer matrices method (described in [1])
is used to calculate the LSP. However, to use this method, it is required that the braiding matrices
of the model (described in [2, 9]) satisfy the following two inversion relations

𝑅
ℎ,ℎ
𝑖

(𝑢)𝑅ℎ,ℎ
𝑖

(−𝑢) = 𝜌(𝑢)𝜌(−𝑢)1𝑖 ,

𝑅
ℎ,ℎ̄
𝑖

(𝑢)𝑅ℎ,ℎ̄
𝑖

(−𝑢) = �̃�(𝑢) �̃�(−𝑢)1𝑖 ,
(16)

where 𝜌(𝑢) = ∏𝑛−2
𝑟=0 \1(Z𝑟−𝑢, 𝑞)/\1(Z𝑟 , 𝑞), �̃�(𝑢) =

∏𝑛−2
𝑟=0 \1( Z̃𝑟−𝑢, 𝑞)/\1(Z𝑟 , 𝑞), the theta function

was defined in eq. (8), 1𝑖 is the identity operator and Z𝑟 = 𝜋
2 (Δ𝑟+1 − Δ𝑟 ), Z̃𝑟 = 𝜋

2 (Δ̃𝑟+1 − Δ̃𝑟 ).
Here Δ𝑟 , Δ̃𝑟 are the dimensions of the fields 𝜓𝑟 , �̃�𝑟 respectively appearing in the fusion products
ℎ · ℎ =

∑𝑛−1
𝑟=0 𝜓𝑟 , ℎ · ℎ̄ =

∑𝑛−1
𝑟=0 �̃�𝑟 , and 𝑟 = 0, 1, . . . , 𝑛 − 2. Thus, if the crossing multipliers of the

model are given by the character (14), and (16) holds, then, one can give arguments to conjecture
that (see [10] for the details of these arguments), in the regime III of the model which is defined by
0 < 𝑞 < 1 and 0 < 𝑢 < 𝑙 and in the limit 𝑞′ → 0, (𝑞′)𝑢 → 𝑓 𝑖𝑥𝑒𝑑, the LSP is given by

𝑃(𝑎 |𝑏, 𝑐) =
𝜒𝑎 (𝑥)𝐵𝑎,𝑏,𝑐 (𝑥)
𝜒𝑏 (𝑥)𝜒𝑐 (𝑥)

, (17)

where 𝑥 = (𝑞′)𝑔/(𝑘+𝑔) , and 𝐵𝑎,𝑏,𝑐 (𝑥) is the branching function of a coset algebra that involves
the initial affine Lie algebra �̂�. By using the definition of the branching function 𝜒𝑏 (𝑥)𝜒𝑐 (𝑥) =∑

𝑎 𝜒𝑎 (𝑥)𝐵𝑎,𝑏,𝑐 (𝑥), one can see that (17) satisfies
∑

𝑎 𝑃(𝑎 |𝑏, 𝑐) = 1.

4. Conclusions

In this work, we have shown that the principally specialized character of integrable highest-
weight representations of the untwisted affine Lie algebras is given by a formula that contains a
product of 𝑛 theta functions (where 𝑛 is the numbers of positive roots of the corresponding finite
Lie algebra). In turn, we have found that this character is the crossing multiplier described by Jimbo
et al. [5, 6] for the algebras 𝐴𝐵𝐶𝐷 and by Kuniba et al. [7] for 𝐺2. We thus showed that the
principally specialized character gives the crossing multiplier for affine theories.

2Do not confuse with the 𝛼 in (14).
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One of our main conjectures is that for the general IRF theory, built out of some conformal
field theory data, the crossing symmetry holds, where the character of the CFT gives the crossing
multiplier. This agrees with the affine case discussed above. We believe that this result is important
in the study of lattice models and, in particular, for the computation of local state probabilities. In
this respect, we also propose the conjecture (17), which relates the local state probability with the
branching function of a coset algebra. The main examples for such models are WZW theories, see,
[5, 6]. Other models based on other CFTs (coset of affine Lie algebras) are known in the literature,
see [14]. However, for the most part, these models remain to be explored explicitly in the future.
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