PoS - Proceedings of Science
Volume 414 - 41st International Conference on High Energy physics (ICHEP2022) - Higgs Physics
Development of novel experimental techniques to improve the understanding of the Higgs sector by the ATLAS experiment
S. Jiggins
Full text: pdf
Pre-published on: December 09, 2022
Published on:
Abstract
With the full Run-2 (2015-2018) proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider, precise measurements of Higgs boson properties in an array of production and decay modes are now possible. To maximise the scientific value of the recorded data, novel experimental techniques were developed. The following article reviews a representative selection of such techniques, which includes: multi-class machine learning classification optimisation algorithms, experimental uncertainty regression, input variable invariant adversarial neural networks, object embedding, and multi-dimensional likelihood re-weighting techniques designed to maximise the statistical precision of Monte Carlo predictions.
DOI: https://doi.org/10.22323/1.414.0526
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.