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With the full Run-2 (2015-2018) proton-proton collision data collected by the ATLAS detector
at the Large Hadron Collider, precise measurements of Higgs boson properties in an array of
production and decay modes are now possible. To maximise the scientific value of the recorded
data, novel experimental techniques were developed. The following article reviews a represen-
tative selection of such techniques, which includes: multi-class machine learning classification
optimisation algorithms, experimental uncertainty regression, input variable invariant adversarial
neural networks, object embedding, and multi-dimensional likelihood re-weighting techniques
designed to maximise the statistical precision of Monte Carlo predictions.
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1. Introduction

Following the discovery of the Higgs boson [1–4] at the Large Hadron Collider [5] (LHC) in
2012 by the ATLAS [6] and CMS Collaborations [7, 8], precision measurements of the Higgs boson
and its properties have become increasingly important as a probe of the Standard Model (SM). This
migration towards precision measurements has consequently lead to significant effort in the field of
data analysis, with particular emphasis on analysis techniques that maximise information extraction
from the recorded proton-proton collision data (e.g. machine learning [9]). The following article
will therefore summarise five use cases of data analysis techniques in the sub-fields of machine
learning classification (Section 2) and regression (Section 3), object embedding (Section 4), and
multi-dimensional re-weighting (Section 5).

2. Machine Learning: Classification

H → γγ : Ever since the discovery of the Higgs boson [7] the di-photon Higgs decay mode
(H → γγ ) has been a key decay channel for measuring the Higgs boson properties. The latest
analysis studying this decay mode, Ref. [10], concentrates on precisely measuring production
cross-sections of the Higgs boson within the simplified template cross-section (STXS) paradigm
[12]. With 44 STXS cross-section categories split according to production mode, di-jet invariant
mass (mj j), jet multiplicity, and transverse momentum (pT) of the Higgs/vector bosons, maximising
analysis sensitivity is achieved via a D-optimality (determinant) criterion technique.
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Figure 1: Sub-figure 1a shows the multi-class BDT output score (max1≤i≤44(wi · zi)) for a single STXS
category following the D-optimality criterion procedure, showing the correctly assigned (signal selected)
and incorrectly rejected (signal rejected) signal, in addition to other signal processes accepted into the STXS
category as a result of the BDT categorisation [10]. Sub-figure 1b shows the mbb of the reconstructed
H → bb̄ decay for the VBF H → bb̄ analysis [11] in the signal regions with/without adversarial training
(SR λ = 10/0), and the control region (RegLow).
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Specfically, Higgs signal events are distributed across the STXS categories via a multi-class
boosted decision tree (BDT), trained with 44 class labels (yi, where i ∈ [1, 44]) using categorical
cross-entropy. The BDT assigns STXS class labels (zi) to each event based on the maximum
predicted class label, max1≤i≤44(zi). However, as the statistical power of each STXS bin is a
combination of the signal to noise ratio, statistical error, and theoretical/experimental uncertainties,
optimising the analysis BDT output based on the aforementioned statistical features would lead to
maximum information retention. Therefore, the BDT output scores are transformed by a scalar
quantity wi, according to max1≤i≤44(wi · zi), which are then optimised by minimising the D-
optimality criterion:

Dopt. =
1
2
· log

( |Cexp + Ctheo |
|Cexp |

)
, (1)

where C... represents the covariance matrix of the experimental (exp) and theoretical (theo) un-
certainties obtained by single-bin asimov fits (signal+background MC) in each of the 44 STXS
categories. Using the Powell algorithm for multi-variable function minimisation [13], the weights
of each class label wi are iteratively optimised from starting values of 1.0 in such a way that
D-optimality criterion is minimised. In essence, as the inverse of the determinant of the covari-
ance matrix is a measure of retained information, minimising the D-optimality criterion results in
maximum information retention. Figure 1a shows for the gg → H production mode with 1-jet
in the 120 ≤ pH

T ≤ 200 GeV region the true signal that is accepted and rejected based on the
transformed BDT output, and the remaining STXS signal components incorrectly assigned to the
aforementioned category.

VBF H → bb̄ : Measurement of the vector boson fusion (VBF) production mode of the Higgs
boson in which the Higgs decays to bottom quarks, as in the recent VBF H → bb̄ analysis (Ref.
[11]), has two background processes: non-resonant QCD multi-jet, and resonant Z(bb̄) + jets .
Separating these backgrounds for the signal is achieved by an adversarial neural network (ANN),
in order to decorrelate the classifier score p(yi) of an event with the invariant mass of the Higgs
candidate, or more precisely the di-jet invariant mass mbb. The neural network is constructed using
a multi-layer perceptron (MLP) as a classifer trained using cross-entropy with two class label:

L = − 1
N

N∑
i

c∑
j

yi, j log(p(yi, j))), (2)

where yi, j is the class label of the ith event and j th class, and p(yi, j) is the predicted probability
of class yi. The adversary is trained to predict from the classifier output score the corresponding
mbb bin in which the event is placed, where a total of ten bins in the range of 70 − 200 GeV
are constructed. This is achieved by training the adversary on categorical cross-entropy with 10
classes (c ∈ [1, 10], one class per mbb bin). The total loss of the combined system is then defined
as L = Lclass. − λ · Ladv., where Lclass. is the classifier loss, and Ladv. is the adversary regularised
by a hyperparameter λ. The aim of ANN is to reduce sculpting of the mbb distribution when
cutting on the ANN score to define signal/control regions. Figure 1b shows for the central region
of the analysis the mbb spectrum of the signal region (SR1) with (λ = 10) and without (λ = 0) the
adversary MLP, in addition to the control region (RegLow). As the RegLow is defined by a cut on

3



P
o
S
(
I
C
H
E
P
2
0
2
2
)
5
2
6

Development of novel exp. techniques to improve the understanding of the Higgs sector Jiggins, Stephen

the ANN score of < 0.56 and SR1 is defined by an ANN cut of > 0.86 it can be seen that that the
adversarial setup successfully decorrelates the ANN score from the mbb.

3. Machine Learning: Quantile Regression

H → Z∗Z : The Higgs decay to two Z-bosons (H → Z∗Z ) has since 2012 [7] been a key decay
channel when measuring properties of the SM, with particular interest placed on the Higgs mass
precision as given by the most recent iteration of the analysis, Ref. [10]. The analysis strategy
employs an unbinned profile likelihood fit with the generic form:

L(mH | ®x) = L(mH | m4l,D, σ) =
Nevt .∏

i

P(mi
4l,D

i, σi | mH ), (3)

where mH is the Higgs boson mass, m4l is the reconstructed invariant mass of the four lepton
system, σ is the resolution of the four lepton system, D is the analysis neural network score
used to discriminant signal from SM backgrounds, and the index i runs over all events Nevt .. In
practice constructing a 3-dimensional probability density function (pdf) to estimate mH is infeasible,
therefore the pdf’s are broken down into conditional components with the signal pdf model taking
the form:

Ps(mi
4l,D

i, σi | mH ) = P(m4l | D, σ,mH ) · P(D | σ,mH ) · P(σ | mH ). (4)

The pdf of the signal in the reconstructed analysis discriminant m4l, P(m4l | D, σ,mH ), is expressed
as a double sided crystal ball (DCB) function which is dependent on the four lepton system resolution.
Since the pdf is conditional on the four lepton system, and given the asymmetric nature of the DCB
function, the 1σ variance of the individual lepton resolutions does not translate into a 1σDCB

interval, and the lepton momentum resolution errors are underestimated by approximately 10-20%.
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Figure 2: Shows the per event m4l predicted by the
QRNN for data (points), signal (Higgs Boson) and
the estimated background [10].

To combat this a per event resolution, σi,
is estimated using a quantile regression neural
network that estimates an error quantile for the
O = |mconst.

4l − mtruth,born
4l | observable. The neural

network architecture (QRNN) is constructed from
two MLP blocks and a recurrent neural network
(RNN) block. The first MLP is fed the transverse
momentum of the constrained four lepton sys-
tem (pconst.

T,4l ) and σconst.
m4l

, which in tandem with the
RNN block that is fed the four vector information
of the four leptons ordered by transverse momen-
tum, creates a latent space representation that is
aggregated by the second MLP to predict the tar-
get quantile. This is achieved by the minimisation
of the loss function:
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Loss =
N∑
i

max{q · (Otrue − Opredicted), (1− q) · (Otrue − Opredicted)} +
1
w

N∑
i

(
σ

predicted
m4l

σconst.
m4l

− µ
)2

, (5)

where q is the target quantile (0.683 = 68.3% quantile), Otrue/predicted is the true/predicted difference
of the constrainted four lepton system mass difference between reconstructed and born truth level
defintion, and w/µ are the hyper-parameters set during network optimisation. The QRNN is then
used to assign each event a four lepton mass resolution value corresponding to the 68.3% quantile
1σ error definition. Figure 2 shows the final σi predictions for signal, background, and data, used
in the analysis.

4. Object Embedding

VBF H → ττ : For the analysis of vector boson fusion (VBF) production of a Higgs boson that
decays to τ-leptons (Ref. [14], referred to as VBF H → ττ ), the irreducible Z(ττ)+jets background
MC prediction suffers from modelling inaccuracies due to the simulation of τ-decays inside the
ATLAS detector volumne. To correct this a kinematic object embedding procedure was adopted,
akin to that of the b-jet embedding procedure of Ref. [11]. In this instance however, instead of
replacing electrons/muons in Z(ee/µµ)+jets data events with simulated τ-decays, the four vector of
the electrons/muons are scaled by a scalar quantity. This scalar quantity is estimated from simulated
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Figure 3: Sub-figure 3a shows as a function of Emiss
T simulated Z(l±l∓) + jets and Z(ττ) +

jets processes against simulated Z(l±l∓) + jets with kinematically embedded τ-decay emulation [14].
Sub-figure 3b shows the MC prediction of top-quark pair production using Powheg+Pythia 8 and Mad-
Graph5_aMC@NLO+Pythia 8 as a function of the VH(bb̄) [15] analysis BDT discriminant. The multi-
dimensionally mapped Powheg+Pythia 8 (weighted) matches within statistical errors the target Mad-
Graph5_aMC@NLO+Pythia 8 distribution.
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τ-decays, with the intention of emulating invisible τ-decay components such as neutrinos. The
missing energy as a result of the invisible decay products are then introduced into the event topology
as a missing transverse energy (Emiss

T ) component to ensure energy-momentum conservation within
the event. Figure 3a shows the emulated Emiss

T differential cross-section for simulated Z(l±l∓)+jets ,
Z(ττ)+jets , and the embedded Z(l±l∓)+jets sample demonstrating via the closure of the embedded
Z(l±l∓) + jets with the dedicated Z(ττ) + jets simulation the successful emulation of Emiss

T .

5. Multi-dimensional Re-weighting: Statistical Precision

VH H → bb̄ : Within the frequentist statistical paradigm (e.g. profile likelihoods [16]) the
statistical precision of an expectation value is often dictated by Monte Carlo sample sizes. The
production of MC predictions involves both a nominal expectation used in a likelihood fit, in
addition to alternative samples used to evaluate MC model uncertainties. These alternative samples
however are often generated with a smaller effective luminosity due to limited CPU resources.
Consequently, differential cross-sections predicted by alternative MC samples often suffer from
a reduced statistical precision. To compensate for this, often a re-weighting approach is adopted
in which the nominal MC configuration is weighted event-by-event to match the prediction of the
alternative. This is achieved by a mapping function f (®x) defined by the left hand side of equation
6:

f (®x | ®θ) = Palt.(®x | ®θalt.)
Pnom.(®x | ®θnom.)

=
Palt.(s(®x) | ®θalt.)

Pnom.(s(®x) | ®θnom.)
= f (s(®x) | ®θ), (6)

where Pnom./alt.(®x | ®θ) is the probability density function of the nominal/alternative MC prediction
for a phase space point defined by the vector ®x, conditioned on the parameters of the model ®θ.
Obtaining this mapping function however is problematic for a p-dimensional input space ®x ∈ Rp,
due to the curse of dimensionality in which the statistical precision of the sampled space via Monte
Carlo methods is diluted. To address this problem, a density ratio estimator in the form of a
calibrated BDT was employed in the analysis of a Higgs boson produced in association with a SM
vector boson for H → bb̄ (Ref. [15]). Utilising a classification BDT trained on the nominal and
alternative samples, the mapping function f (®x) is obtained using the equivalence principle shown
by the right hand side of equation 6, where s(®x) is the BDT output classifier score. The above
density ratio is then calibrated using a binned technique similar to that outlined in Ref. [17].

Figure 3b illustrates the application of the multi-dimensional mapping function f (s(®x) | θ) to
top quark pair production (tt̄ ). The nominal MC sample for tt̄ produced via Powheg+Pythia 8 is
mapped using the above technique to match the alternative matrix element (ME) MC configuration
given by MadGraph5_aMC@NLO+Pythia 8 , as shown by the weighted histogram. The analysis
discriminant is shown as it aggregates 11-13 input variables in a BDT to classify the VH(bb̄) signal
against the SM backgrounds, thereby demonstrating the multi-dimensional mapping power of the
technique.

6. Conclusion

Data analysis techniques in the fields of machine learning classification and regression, object
embedding, and multi-dimensional probability density weighting have been shown across an array

6



P
o
S
(
I
C
H
E
P
2
0
2
2
)
5
2
6

Development of novel exp. techniques to improve the understanding of the Higgs sector Jiggins, Stephen

of ATLAS analyses aimed at studying the Higgs boson. The techniques are designed to maximise the
information extracted from LHC proton-proton collision data, with the specific goal of maximising
analysis measurement precision or discovery potential in the Higgs sector [9].
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