

PoS

Mixing and indirect *CP* violation in charm mesons at LHCb

Surapat Ek-In*

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland on behalf of the LHCb collaboration

E-mail: surapat.ek-in@cern.ch

The LHCb experiment has collected the world's largest sample of charmed hadrons. This sample is used to measure $D^0 - \overline{D}^0$ mixing and to search for *CP* violation. New measurements of the mixing and *CP*-violation parameters x_{CP} , y_{CP} , Δx and Δy are presented.

41st International Conference on High Energy Physics – ICHEP2022 6–13 July, 2022 Bologna, Italy

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

Neutral meson oscillation is the transition between a neutral-flavoured meson and its antiparticle. In neutral charm mesons (D^0) , it is known as $D^0 - \overline{D}^0$ mixing. This phenomenon involves flavour changing neutral currents through down-type quarks. The study of D^0 mesons is thus complementary to that of mesons containing down-type quark only, K^0 and $B^0_{(s)}$, in searches for interactions beyond the Standard Model of particle physics (SM). Because mixing and charge-parity (CP) violation in the charm sector are much more suppressed than in the other decays of down-type mesons, large and clean samples of D^0 decays are required. Such large samples can be obtained at the LHCb experiment [1] which has collected the world's largest sample of charm hadrons during the Run 2 operation of the Large Hadron Collider between 2015 and 2018 [2]. In the following sections, two measurements of $D^0 - \overline{D}^0$ mixing and a search for *CP* violation performed at the LHCb experiment are presented.

2. Model-independent measurement of the charm mixing parameters in $\overline{B} \to D^0 (\to K_S^0 \pi^+ \pi^-) \mu^- \overline{\nu}_{\mu} X$ decays

In the SM, the transition between a neutral flavoured meson and its antiparticle is mediated by charged weak interactions involving the exchange of two W bosons. The oscillation occurs because the mass eigenstates are not eigenstates of the weak interaction. They can be written as a linear combination of flavour eigenstates as $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}^0\rangle$, where p and q are complex parameters satisfying $|p|^2 + |q|^2 = 1$. The states $|D_{1,2}\rangle$ conventionally denote as the nearly *CP* even (D₁) and odd (D₂) mass eigenstates, with eigenvalues $\omega_{1,2} = m_{1,2} - \frac{i}{2}\Gamma_{1,2}$, where $m_{1(2)}$ and $\Gamma_{1(2)}$ are the mass and decay width of the $D_{1(2)}$ state. The oscillation can simply be described by the dimensionless mass-splitting parameter $x = (m_1 - m_2)/\Gamma$ and decay-width splitting parameter $y = (\Gamma_1 - \Gamma_2)/(2\Gamma)$, where Γ is the average decay width [3].

A recent measurement of these mixing parameters is based on the LHCb dataset of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays collected from 2016 to 2018 [4]. The candidates are exclusively selected with the topology of a *b* hadron decaying to $D^0 \mu^- \overline{\nu} X$, where *X* stands for any combination of unreconstructed particles. The D^0 flavour is determined from the charge of muon. The decay $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ has a rich resonant structure which can be used to measure the mixing and *CP* violation parameters *x*, *y*, |q/p| and $\phi \sim \arg(q/p)$ [11]. These are expressed in terms of the *CP*-even mixing parameters

$$x_{CP} = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right],\tag{1}$$

$$y_{CP} = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right], \tag{2}$$

and the CP-violating differences

$$\Delta x = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right],\tag{3}$$

$$\Delta y = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right].$$
(4)

Absence of *CP* violation $(|q/p| = 1, \phi = 0)$ implies $x_{CP} = x$, $y_{CP} = y$, and $\Delta x = \Delta y = 0$.

Figure 1: (Left) Iso- $\Delta\delta$ binning scheme of the Dalitz plot of the $D^0 \to K_S^0 \pi^+ \pi^-$ decay; m_{\pm}^2 represents $m^2(K_S^0 \pi^{\pm})$ for D^0 . (Right) Fit projection of the time-dependent *CP*-even yield ratios for D^0 and \overline{D}^0 decays in each Dalitz-plot region.

The bin-flip method [5] measures the time-dependent ratio R_{bj}^{\pm} between positive (upperhalf, +b) and negative (lower-half, -b) Dalitz bins of constant strong phase difference partitioned according to CLEO iso- $\Delta\delta$ binning scheme [6] as shown in Figure 1 (left). The method suppresses most of the biases induced by non-uniform event reconstruction efficiencies. The fit to this timedependent ratio is shown in Figure 1 (right), yielding

$$x_{CP} = \begin{bmatrix} 4.29 \pm 1.48 \pm 0.26 \end{bmatrix} \times 10^{-3}, \qquad \Delta x = \begin{bmatrix} -0.77 \pm 0.93 \pm 0.28 \end{bmatrix} \times 10^{-3},$$
$$y_{CP} = \begin{bmatrix} 12.61 \pm 3.12 \pm 0.83 \end{bmatrix} \times 10^{-3}, \qquad \Delta y = \begin{bmatrix} 3.01 \pm 1.92 \pm 0.26 \end{bmatrix} \times 10^{-3},$$

where the first uncertainties are statistical and the second are systematic. The results are compatible with those measured in the analysis of $D^{*+} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \pi^+$ decays [7]. A combination of the two samples is performed, giving

$$x = (4.01 \pm 0.49) \times 10^{-3}, y = (5.5 \pm 1.3) \times 10^{-3}, |q/p| = 1.012^{+0.050}_{-0.048}, \phi = -0.061^{+0.037}_{-0.044}$$
 rad.

Figure 2 shows the measured mixing and CP-violating parameters of the two samples and their combination. The value of x is incompatible with zero with a significance over 8 standard deviations, constituting the most precise measurement from a single experiment. The results are compatible with CP symmetry.

Figure 2: Two-dimensional 68% and 95% confidence-level contours for (left) (x, y) and (right) $(|q/p| - 1, \phi)$ for the Run 2 $D^{*+} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \pi^+$ (Prompt) [7] and $\overline{B} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \mu^- \overline{\nu}_{\mu} X$ (SL) [4] measurements, and for their combination.

3. Measurement of the charm mixing parameter $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 meson decays

The parameter y_{CP} , related to decay width as defined in Equation 2, is measured by analysing the time-dependent distribution of Cabibbo-suppressed $D^0 \rightarrow f$ decays with $f = K^-K^+, \pi^-\pi^+$ final states. The time-dependent ratios, $R^f(t)$, of their yields relative to the $D^0 \rightarrow K^-\pi^+$ final state can be approximated with an exponential distribution as

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi}) t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)},$$
(5)

where y_{CP}^{f} is the y_{CP} parameter measured in the final state f, and $\varepsilon(f,t)$ is the time-dependent efficiency for the considered final state. The $y_{CP}^{K\pi}$ and $\varepsilon(K^{-}\pi^{+},t)$ are y_{CP} and efficiency measured in the $K\pi$ final state. The measurement of y_{CP} is performed using the full Run 2 dataset collected by the LHCb experiment, corresponding to an integrated luminosity of 6 fb⁻¹ [8]. D^{0} candidates are obtained from $D^{*+} \rightarrow D^{0}\pi^{+}$ decays. The analysis measures y_{CP}^{f} relative to the one in $K^{-}\pi^{+}$ final state, $y_{CP}^{f} - y_{CP}^{K\pi}$. Figure 3 presents a fit to the ratios. This yields

$$y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3},$$

$$y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3},$$

where the first uncertainties are statistical and the second systematic. The results show good compatibility between K^-K^+ and $\pi^-\pi^+$. A combination of the two measurements is performed, yielding

$$y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$$
.

This result is compatible with the world average before this measurement [9] and more precise by a factor of four. The world average is dominated by this measurement and provides the most precise constraint on y_{CP} .

Figure 3: Fit projection of time-dependent ratios $R^{f}(t)$ for (left) $f = \pi^{-}\pi^{+}$ and (right) $f = K^{-}K^{+}$.

4. Search for time-dependent *CP* violation in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays

A measurement of the time-dependent asymmetry between D^0 and \overline{D}^0 decays into a common final state f, where $f = K^- K^+$, $\pi^- \pi^+$, is presented. Since D^0 mixing is very slow, the decay rate

asymmetry can be smaller than 1%. This allows their decay rate asymmetry to be approximated up to the first order in the mixing parameters as

$$A_{CP}(f,t) \approx A_{CP}^{\text{decay}}(f) + \Delta Y_f \frac{t}{\tau_{D^0}},$$
(6)

where τ_{D^0} is the lifetime of the D^0 meson and $A_{CP}^{\text{decay}}(f)$ is the final state dependent *CP* asymmetry in the decay. A significant deviation of ΔY_f from zero would indicate the presence of *CP* violation. The SM estimation of ΔY_f is of the order of 10^{-5} , but could be enhanced by non-perturbative strong interaction effects to 10^{-4} [10, 11].

The most recent measurement from the LHCb collaboration is performed on the full LHCb Run 2 dataset, corresponding to an integrated luminosity of 6 fb⁻¹ [12]. The $D^0 \rightarrow h^+h^-$ ($h = K, \pi$) candidates are obtained from $D^{*+} \rightarrow D^0\pi^+$ decays. The analysis procedure is validated in the $D^0 \rightarrow K^-\pi^+$ channel, where $\Delta Y_{K^-\pi^+}$ is expected to be compatible with zero at the current level of sensitivity. The fits to the time-dependent asymmetries are shown in Figure 4, and yield $\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$ and $\Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$. These values are compatible within uncertainties. A weighted average, denoted as ΔY , between the results for the two final states, and including also previous LHCb measurements [13–15], yields

$$\Delta Y = (-1.0 \pm 1.1 \pm 0.3) \times 10^{-4},\tag{7}$$

where the first uncertainty is statistical and the second systematic. This value is consistent with *CP* symmetry and constitutes the world most precise determination of this quantity.

Figure 4: Fits to the time-dependent asymmetry $\Delta Y_{\pi^-\pi^+}$ (left) and $\Delta Y_{K^-K^+}$ (right) using the full LHCb Run 2 dataset.

5. Conclusion and outlook

LHCb has produced the largest dataset of charm hadrons. This leads to new interesting results and often provides world-best measurements. However, the measurements are statistically limited. This is expected to be improved in Run 3, which is starting this year and will collect up to 50 fb⁻¹ of integrated luminosity by 2030 with an upgraded detector software-only trigger [16, 17].

Acknowledgments

The author gratefully acknowledges support from the Swiss National Science Foundation, under grant number 185050.

References

- [1] LHCb collaboration, The LHCb detector at the LHC, JINST 3 (2008) S08005.
- [2] LHCb collaboration, *Measurements of prompt charm production cross-sections in pp collisions at* $\sqrt{s} = 13 \text{ TeV}$, *JHEP* **03** (2016) 159 LHCb-PAPER-2015-041 CERN-PH-EP-2015-272, [1510.01707].
- [3] Particle Data Group, Review of Particle Physics, PTEP 2022 (2022) 083C01.
- [4] LHCb collaboration, Model independent measurement of charm mixing parameters in $B^- \to D^0 (\to K^{*0} \pi^+ \pi^-) \mu^- \overline{\nu}_{\mu} X$ decays, 2208.06512.
- [5] A. Di Canto, J. Garra Ticó, T. Gershon, N. Jurik, M. Martinelli, T. Pilař et al., Novel method for measuring charm-mixing parameters using multibody decays, Phys. Rev. D99 (2019) 012007.
- [6] CLEO collaboration, Model-independent determination of the strong-phase difference between D^0 and $\overline{D}^0 \to K^0_{S,L}h^+h^-$ ($h = \pi, K$) and its impact on the measurement of the CKM angle γ/ϕ_3 , Phys. Rev. **D82** (2010) 112006.
- [7] LHCb collaboration, Observation of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 127 (2021) 111801.
- [8] LHCb collaboration, Measurement of the charm mixing parameter $y_{CP} y_{CP}^{K\pi}$ using two-body D^0 meson decays, Phys. Rev. **D105** (2022) 092013.
- [9] Heavy Flavor Averaging Group, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C81 (2021) 226.
- [10] M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, *How large can the SM contribution to CP violation* in $D^0 - \overline{D}^0$ mixing be?, JHEP **03** (2010) 009.
- [11] A.L. Kagan and L. Silvestrini, *Dispersive and absorptive CP violation in* $D^0 \overline{D}^0$ *mixing*, *Phys. Rev. D* **103** (2021) 053008.
- [12] LHCb collaboration, Search for time-dependent CP violation in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays, Phys. Rev. **D104** (2021) 072010.
- [13] LHCb collaboration, Measurement of indirect CP asymmetries in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ decays using semileptonic B decays, JHEP 04 (2015) 043.
- [14] LHCb collaboration, Measurement of the CP violation parameter A_{Γ} in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^$ decays, Phys. Rev. Lett. **118** (2017) 261803.
- [15] LHCb collaboration, Updated measurement of decay-time-dependent CP asymmetries in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays, Phys. Rev. **D101** (2020) 012005.
- [16] LHCb collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, 2012.
- [17] LHCb collaboration, Computing Model of the Upgrade LHCb experiment, 2018.