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The measurement of beauty production in proton-proton (pp) collisions offers the possibility to
test predictions based on perturbative Quantum Chromodynamics (QCD) calculations, to inves-
tigate mechanisms of heavy-flavour fragmentation, and to provide a reference for corresponding
measurements in heavy-ion collisions. Thanks to the excellent tracking capabilities, measure-
ments with the ALICE experiment can assess beauty production down to low momenta. In this
document, recent measurements of the ALICE Collaboration on beauty production in pp collisions
at
√
𝑠 = 13 TeV are presented.
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Beauty production in small systems with ALICE at the LHC

1. Introduction

The investigation of beauty-quark production in high-energy proton-proton (pp) collisions
is motivated by several aspects. By measuring the beauty production cross section, predictions
based on perturbative Quantum Chromodynamics (pQCD) calculations can be tested [1–3]. In
addition, the measurement of the relative abundances of different b-hadron species allows to study
the mechanisms of heavy-quark fragmentation [1]. Finally, studies on beauty production in pp
collisions serve as a reference for corresponding measurements in heavy-ion collisions. Beauty
quarks are effective tools to probe the properties of the Quark-Gluon Plasma [3] created in ultra-
relativistic heavy-ion collisions. Moreover, non-prompt D mesons constitute the major source of
background for the measurement of the spin alignment of prompt vector D mesons, which carries
information about the magnetic field and the angular momentum in the initial stage of a heavy-ion
collision [4].
The weak decays of b-hadrons occur with long lifetimes of 𝜏 ≈ 450 µm/𝑐 [5]. Consequently,
beauty-hadron decays produce a secondary vertex that is well displaced from the primary vertex
of the collision. This property can be exploited to identify beauty-hadron decay tracks by their
large displacement from the primary vertex. Within the ALICE Collaboration, lifetime-based
observables are utilised for the identification of beauty in several ways. Statistical methods are
applied for which the relative contribution of beauty signals is determined by template fits [2].
Further analysis methods entail the event-based identification of b-jets (“b-jet tagging”) [3] and
the machine-learning (ML) based selection of non-prompt charm hadrons [1]. Due to the unique
tracking performance of the Time Projection Chamber (TPC) and the Inner Tracking System (ITS),
the ALICE experiment [6] offers excellent capabilities to measure beauty production down to low
momenta. In these proceedings, an overview is given on recent ALICE measurements of beauty
production in pp collisions at

√
𝑠 = 13 TeV.

2. Results

The cross section for the production of electrons from beauty-hadron decays (“beauty elec-
trons”) has been measured using a statistical approach. Template fits to distributions of the trans-
verse impact parameter of tracks identified as electrons have been utilised to determine the relative
abundance of beauty electrons in different transverse momentum (𝑝T) intervals. The ratio of the
beauty-electron cross section measured in pp collisions at

√
𝑠 = 13 TeV with respect to results at√

𝑠 =7 TeV [7], 5.02 TeV, and 2.76 TeV [8] are shown in Fig. 1. The data are compatible with
FONLL predictions [9] based on pQCD calculations with fixed-order and next-to-leading log accu-
racy. In addition, it was found that beauty electrons are the dominant contribution to heavy-flavour
electrons for a transverse momentum of 𝑝T > 5 GeV/𝑐.

The cross section of charged-particle b-jets has been measured as a function of the jet transverse
momentum (𝑝T,ch jet). Jets with a radius of 𝑅 = 0.4 have been identified with the anti-𝑘T algorithm
and b jets have been selected based on jet constituents with a large transverse impact-parameter
significance. As it can be seen in Fig. 2, the corresponding cross section measured in pp collisions
at
√
𝑠 =13 TeV is larger than the one measured at 5.02 TeV by a factor of two to six from low to large

𝑝T,ch jet. The relative abundance of b jets to inclusive jets is compatible at the two collision energies.
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Figure 1: The ratio of the beauty-electron cross section for pp collisions at
√
𝑠 = 13 TeV to the corresponding

cross sections at 7 TeV [7] (left), 5.02 TeV (middle) and 2.76 TeV [8] (right) as a function of 𝑝T compared to
FONLL calculations [9].

20 40 60 80 100
)c (GeV/

T,ch jet
p

8−10

7−10

6−10

5−10

4−10

3−10

2−10

/G
e

V
)

c
 (

m
b

 
je

t
η

 d
T

,c
h
 j
e
t

p
d

σ
2

d

=13 TeV,spp 

=2.7%Lσno UE correction, 

=5.02 TeV,spp 

=2.34%Lσwith UE correction, 

ALICE Preliminary

Tkcharged-particle jets, anti-
| < 0.5

jet
η = 0.4, |R

ALI−PREL−507445

20 40 60 80 100
)c (GeV/

T,ch jet
p

0

0.05

0.1

b
-j
e

t 
fr

a
c
ti
o

n

ALICE Preliminary

Tkcharged-particle jets, anti-
| < 0.5

jet
η = 0.4, |R

=13 TeV, no UE correctionspp 

=5.02 TeV, with UE correctionspp 

ALI−PREL−507488

Figure 2: Comparison of charged-particle b-jet measurements for pp collisions at
√
𝑠 = 5.02 TeV [3] and

13 TeV. The measurement at 5.02 TeV is corrected for the underlying event (UE) contribution to the jet
momentum differently from the measurement at 13 TeV. Left: the b-jet cross section as a function of 𝑝T,ch jet.
The additional normalisation uncertainties 𝜎𝐿 [15, 16] are quoted in the legend. Right: the b-jet to inclusive-
jet 𝑝T-differential cross-section ratio with the cross section of inclusive jet production at

√
𝑠 = 13 TeV from

Ref. [17].

In comparison to the measurement at 5.02 TeV, the systematic uncertainties of the spectrum at
13 TeV are smaller at low 𝑝T,ch jet.

The first measurement of the fractions 𝑓non-prompt of non-prompt with respect to inclusive D0 and
D+ mesons as a function of the charged-particle multiplicity has been performed in pp collisions at√
𝑠 = 13 TeV with the help of ML-based selections. The ratio of 𝑓non-prompt for different multiplicity

ranges to the minimum-bias value is shown as a function of multiplicity (d𝑁ch/d[) in Fig. 3 (left).
It exhibits a trend which, within uncertainties, is flat around unity, suggesting that 𝑓non-prompt does
not vary significantly with the multiplicity. The data are described by predictions of a Colour Glass
Condensate (CGC) parametrisation [10] as well as different tunes [11–13] of the Monte Carlo event
generator PYTHIA 8 [11–13]. However, predictions for the 𝑝T-differential ratio of the fraction of
non-prompt D mesons in high-multiplicity collisions to the one in minimum-bias collisions for the
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Figure 3: The ratio of 𝑓non-prompt for different multiplicity ranges to the minimum-bias value for pp collisions
at
√
𝑠 = 13 TeV. The data are compared to predictions of different PYTHIA tunes [11–13]. Left: 𝑓non-prompt

ratio as a function of the charged-particle multiplicity (d𝑁ch/d[) |[ |<0.5 for low transverse momenta (1 <

𝑝T < 2 GeV/𝑐). Right: 𝑓non-prompt ratio at high multiplicities, ⟨d𝑁ch/d[⟩ = 31.5, as a function of 𝑝T.

PYTHIA tunes Monash [11], CR Mode 2 [12] and Colour ropes [13] are in tension with the data
(see Fig. 3, right panel).

The 𝑝T-differential cross section for the production of non-prompt Λ+
c baryons is presented in

Fig. 4 (left). The Λ+
c baryon signal has been measured from the reconstruction of the decay channels

Λ+
c → pK0

s (K0
s → π+π−) and Λ+

c → pK−π+. The weighted average of the results is compared to
predictions based on FONLL for the beauty-hadron cross section in combination with PYTHIA 8
for the description of the Hb → Λ+

c + X decay kinematics. For these predictions, the beauty-quark
fragmentation fraction of Λ+

b baryons measured by the LHCb Collaboration [18] and the fragmen-
tation fractions of B+,B0 and B0

𝑠 [5] for e+e− collisions were used. The production cross section
is described by the model calculations for 𝑝T > 4 GeV/𝑐.
The 𝑝T-dependent cross-section ratio for non-prompt Λ+

c baryons and non-prompt D0 mesons is
shown in Fig. 4 (right). Model calculations significantly underestimate the b-baryon production
relative to the b-meson production for 𝑝T < 4 GeV/𝑐. In particular, the b-baryon production is
enhanced with respect to model predictions that use 𝑓 (b → Λ+

b) from e+e− collisions or implement
the branching ratio Λ+

b → Λ+
c + X as reported in [5]. This deviation might indicate different hadro-

nisation mechanisms being at work in pp and e+e− collisions and that further not-yet measured
beauty-hadron decays can contribute to the observed results.

The spin alignment of the vector meson D∗+ with respect to the helicity axis has been studied by
measuring the diagonal spin density matrix element 𝜌00 for prompt and non-prompt D∗+ mesons
via the reconstruction of the D∗+ → D0π+ (D0 → K−π+) decay channel together with its charge
conjugate. The element 𝜌00 has been deduced from the angular distribution [19]

d𝑁
d cos \∗

= 𝑁0
[
(1 − 𝜌00) + (3𝜌00 − 1) cos2 \∗

]
, (1)
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Figure 4: Measurement results of the cross section of non-prompt D0 mesons and non-prompt Λ+
c baryons

for pp collisions at
√
𝑠 = 13 TeV in comparison to predictions by FONLL and PYTHIA 8. The model

calculations are tuned to measurements in Ref. [5, 18]. See text for more details. Left: the 𝑝T-differential
cross sections. Right: the ratio of the cross section for non-prompt Λ+

c baryons to non-prompt D0 mesons.
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Figure 5: The element 𝜌00 of the spin density matrix for prompt and non-prompt D∗+ mesons as a function
of 𝑝T for pp collisions at

√
𝑠 = 13 TeV. The data are compared to predictions by PYTHIA 8 and EvtGen [20].
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where 𝑁0 is a normalisation constant and \∗ is the angle between the momentum direction of the
𝐷0 (in the rest frame of the D∗+) and the helicity axis of the D∗+.
For prompt D∗+ mesons, the measured element 𝜌00 is compatible with 1/3 and thus with no
polarisation of prompt D∗+ mesons, as it can be seen in Fig. 5. On the other hand, the element 𝜌00
for non-prompt D∗+ mesons is about 0.4 as expected for the decay of pseudo-scalar B mesons into
vector mesons. Both measurements are consistent with predictions by PYTHIA 8 in combination
with the EvtGen [20] decay package.

In conclusion, measurements for beauty-decay electrons, beauty jets, and non-prompt charm hadrons
by the ALICE Collaboration have been presented for pp collisions at

√
𝑠 = 13 TeV. The main findings

can be summarised as follows:

• the production of beauty electrons is described by pQCD calculations;
• the ratio of the cross section of non-prompt Λ+

c baryons to non-prompt D0 mesons is well
described for 𝑝T > 4 GeV/𝑐 if the fragmentation fractions 𝑓 (b → Λ+

b) measured by LHCb
are used instead of those from e+e− measurements;

• the non-prompt D-meson fraction exhibits no significant multiplicity dependence;
• prompt D∗+ mesons are observed to be unpolarised. Non-prompt D∗+ mesons show significant

spin alignment, due to the helicity conservation in beauty-meson decays.
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