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Branching probabilities in transverse momentum dependent Monte Carlo algorithms

The parton branching formulation [1] for transverse momentum dependent (TMD) distributions [2,
3] has allowed one to explore the impact of TMD evolution on a variety of collider processes (for
instance, deep inelastic scattering (DIS) [4], Drell-Yan (DY) lepton pair production [5], di-jets [6],
DY + jets [7, 8]), and investigate the role of transverse momentum recoils [9, 10] and soft-gluon
angular ordering [11–13] in Monte Carlo parton showers.

In the above studies, the branching probabilities are given by splitting functions computed in
the collinear approximation [14–16]. It has long been known, however, that in regions of phase
space sensitive to infrared phenomena [17, 18] contributions beyond the collinear approximation
can be relevant. In this article, based on the work [19], we discuss TMD splitting functions defined
from high-energy factorization [20]. These splitting functions take into account finite transverse
momentum tails in the branching probabilities, which become important when the gluons exchanged
in the initial-state (spacelike) parton decay chain carry small longitudinal momentum fractions 𝑥,
and may be treated as soft. In the following we describe the results of constructing a Monte Carlo
branching algorithm [19, 21] which relies on the implementation of TMD splitting functions in the
framework [1].

The starting point is the branching kinematics for the space-like parton shower [22], including
angular ordering of soft emissions. We describe the parton splitting process at each vertex
through the off-shell TMD splitting functions computed in Refs. [20, 23–26], based on high-energy
factorization [27]. These splitting functions are positive definite, and interpolate consistently
between the collinear limit [14–16] and the high-energy limit [28, 29].

In Ref. [19] we construct corresponding TMD Sudakov form factors, which are obtained from
the angular average 𝑃𝑏𝑎 of the TMD splitting functions as
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where 𝑎, 𝑏 are flavor indices, 𝜇 is the evolution scale, 𝑧 is the longitudinal momentum fraction,
𝑘⊥ is the transverse momentum, and 𝑧𝑀 is the soft-gluon resolution scale, possibly dependent on
𝜇 [13] according to the angular ordering. Using the unitarity picture as in [1], and requiring four-
momentum conservation in the parton decay chain, we obtain branching equations for the TMD
parton distributions Ã𝑎 [3] of the form
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.

where the kernel 𝐾𝑎𝑏 contains the TMD splitting functions, Sudakov form factors and phase space
constraints.

With the TMD splittings and form factors, in Eq. (2) we aim at a combined treatment of small-𝑥
and Sudakov contributions to parton evolution. This is relevant to describe the exclusive structure
of jet final states at high energies, see for instance [30–33]. Other approaches to the treatment of
Sudakov and small-𝑥 effects have recently been investigated, see e.g. the study [34]. The distinctive
feature of the approach in Ref. [19] is that it works at the level of unintegrated, 𝑘⊥-dependent
splitting functions which factorize in the high-energy limit and control the summation of small-𝑥
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logarithmic contributions to the evolution. These splitting functions are then used in the branching
algorithm, where they are integrated to construct the new Sudakov factors. As a result, the TMD
distributions fulfill integral relations expressing the momentum sum rules.

To illustrate the effects of the branching evolution, in Fig. 1 we solve Eq. (2) by numerical Monte
Carlo techniques for given boundary conditions, which we take to be the TMD parameterizations [4]
at 𝜇0 = 1.4 GeV. (Other parameterizations available e.g. in the library [2] could also be used for
the purpose of this illustration.) The solid magenta curves in the top panels of Fig. 1 show the 𝑥
dependence of the gluon and down-quark TMD distributions evolved to 𝜇 = 100 GeV and integrated
over 𝑘2

⊥, while the solid magenta curves in the bottom panels show the 𝑘⊥ dependence of the gluon
and down-quark distributions at 𝜇 = 100 GeV for a fixed value of 𝑥. For comparison, in Fig. 1
we also plot the results which are obtained with the same distributions at scale 𝜇0 but without
including any 𝑘⊥ dependence in the splitting kernels, that is, with the purely collinear splitting
kernels (dashed red curves), and the results which are obtained by including the 𝑘⊥ dependence of
splitting functions in resolvable emissions only (dotted blue curves). In contrast to the full result
and the result with purely collinear kernels, the model with the 𝑘⊥ dependent splitting functions
in resolvable emissions only does not satisfy momentum sum rules, which leads to a significant
departure from the full result. We see that the influence of the TMD splitting kernels on evolution
is significant especially for low 𝑥, gives rise to a change in the 𝑘⊥ and 𝑥 shapes of the distributions
and does not disappear completely after integration over 𝑘⊥.

The numerical implementation of an approach which both includes the TMD splitting functions
and satisfies the momentum sum rules is one of the main achievements of this work. The construction
of a full event generator which uses this approach, e.g. by extending the methods of [35] to the
small-𝑥 phase space [36], will be the subject of future work. Such an event generator could be
compared with existing small-𝑥 Monte Carlo generators, e.g. [37–45]. Also, fits of TMDs to
experimental data based on the new evolution equation, using the xFitter platform [46, 47], are in
progress.

Acknowledgments. The results presented have been obtained in collaboration with F. Hautmann,
M. Hentschinski, A. Kusina, K. Kutak and A. Lelek. I thank the conference organizers and
convenors for the invitation and the very interesting meeting.
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