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We present state-of-the-art results for the QED Parton Distribution Functions (PDFs), which have
been recently pushed up to next-to-leading logarithmic (NLL) accuracy. NLL PDFs properly take
into account the mixing between the electron/positron with the photon and the other fermions,
running-U effects and the dependence on the renormalisation and factorisation scheme. We discuss
the inclusion of NLL PDFs in the automatedMadGraph5_aMC@NLO framework, which have
been equipped with next-to-leading order (NLO) electroweak corrections, and we present first
NLL+NLO predictions for physical observables at lepton colliders.
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It is not unreasonable to assume that the future of high-energy physics will involve an 4+4−

collider [1–4]. It is time for the theoretical community to start thinking about how to enlarge the
legacy of LEP. The techniques and the calculations developed for LEP need to be revisited to keep
up with the astonishing projected experimental error on measurements at future colliders. The
relative error on several electroweak observables will reach 0.01% and possibly be even smaller [5].

The typical cross section relevant to 4+4− collisions is in principle entirely computable as a
perturbative series in the QED coupling constant U. However, calculations of processes in QED
always feature large contributions stemming from photon collinear emissions in the initial state
(initial state radiation, ISR) [6]. These contributions appear as logarithms to some power of some
hard physical scale & over the mass of the electron <4, ! = log: (&2/<2

4):

3f4+4− = U
1

∞∑
==0

U=
(
2
(=)
0 + 2 (=)1 ! + . . . + 2 (=)= !=

)
, (1)

with 1 the power of U in the Born process. These logarithmic terms can be numerically large,
preventing the perturbative series from being well behaved.

It is fortunate that such log: (&2/<2) terms are universal, hence they can be taken into account
to all orders in U by a process-independent resummation procedure. With the collinear factorisation
approach, the physical cross section is written by means of a factorisation formula that recalls the
standard QCD factorization formula at hadron colliders:

3f4+4− =
∑
8 9

∫
3I+3I− Γ8/4+ (I+, `2, <2

4) Γ 9/4− (I−, `2, <2
4) 3f̂8 9 (I+, I−, &2, `2) + O

(
<2
4

&2

)
. (2)

Let us describe the various terms present in this equation: 3f4+4− is the particle-level cross section,
computed with massive electrons; 3f̂8 9 is a parton-level cross section, understood to be computed
with massless electrons, which does not contain any logarithmic term, and is expected to be well-
behaved order by order in perturbation theory; I± are the longitudinal momentum fractions carried
by the partons w.r.t. their mother particle; Γ8/4± are the Parton Distribution Functions (PDFs) of the
electron or the positron, a name that originates from the analogy of Eq. (2) with its QCD counterpart.
PDFs are universal and resum to all order the collinear logarithms due ISR. Note that the nature of
the parton entering the short-distance cross section can coincide with that of the incoming particle
e.g. (8, 9) = (4+, 4−), or it can differ e.g. (8, 9) = (W, 4−), (4−, 4−), . . .. Moreover, as in QCD, a
suitable factorisation scheme must be introduced (e.g. MS) to regulate the zero-mass divergences
in the parton-level cross section and a factorization scale `2 appears both in the Γ8/4± and in 3f̂8 9 .

At variance with hadronic PDFs, QED PDFs are entirely calculable with perturbative tech-
niques. In the following, we will mostly focus on the PDFs relevant to an incoming unpolarised
electron particle, Γ8/4− ≡ Γ8; the PDFs of an incoming positron are trivially related by charge
conjugation. We will refer to Γ4− as electron PDF, and to ΓW as photon PDF. At the initial scale
`2

0 ' <
2
4, the leading order initial condition is a trivial Γ4− (I, `2

0) = X(1 − I). The PDF at the
final scale `2 can be obtained by means of QED DGLAP evolution equations [7–10]. At leading
logarithmic (LL) accuracy i.e. the resummation of the dominant tower of (U!): terms, analytical
expressions have been known for a long time [8, 9, 11, 12]:

ΓLL
4− (I, `2) = exp [(3/4 − W� )[]

Γ(1 + [) [(1 − I)−1+[ − 1
2
[(1 + I) + O(U2) , [ =

U

c
! . (3)
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Such LL analytical expressions are built out of an additive matching between a recursive solution
up to some order in U, typically O(U3), and an all-order U solution valid in the region I → 1. Note
that with & of the order of a few hundred GeV’s one obtains [ ∼ 0.05. Therefore, because of the
(1 − I)−1+[ factor, the PDF is very peaked towards I = 1, where it diverges with an integrable
singularity. In general, such a peculiar structure of the PDFs requires a suitable re-parameterization
of the phase-space [13] when numerically performing the convolution in Eq. (2).

In view of high-energy future colliders and the need for precise predictions, LL accuracy for
QED PDFs is certainly insufficient. Moreover, theoretical systematics are not well defined in a
LL-accurate picture. For instance, the value of U in Eq. (3) is entirely arbitrary at LL: whether
U runs or not, or more generally in which renormalisation scheme U is defined, are questions that
arise only at higher orders. To improve on the LL result, one can calculate individual higher powers
of U;!: by means of fixed-order calculations (see e.g. [14] and references therein) or extend the
resummed result to next-to-leading logarithmic (NLL) accuracy i.e. resumming also the tower of
U(U!): terms. I will focus on the latter.

In Ref. [15], the electron, positron, and photon PDFs of the unpolarised electron have been
calculated at NLL accuracy in the MS factorisation and renormalisation scheme. The PDFs have
been derived by solving the DGLAP equations both numerically and analytically, by using as
initial conditions for the evolution the ones derived in Ref. [16]. In Ref. [17], these results have
been improved in several directions: first, with a DGLAP evolution featuring multiple fermion
families (leptons and quarks) in a variable flavour number scheme i.e. by properly including the
respective mass thresholds; second, by taking into account an alternative factorisation scheme, the
Δ scheme [18], where the NLO initial condition are maximally simplified; third, by considering
two alternative renormalisation schemes, U(</ ) and �` schemes (where U is fixed).

NLL PDFs ready for phenomenology can be obtained with the public code eMELA1. Such a
code supersedes the one developed in Ref. [15] (ePDF), that was limited to the evolution with a
single lepton in the MS renormalisation and factorisation schemes. eMELA is a standalone code,
and can be linked to any external program. Since a runtime evaluation of the numerical solution
is likely too slow for phenomenological applications, the possibility is given to the user to output
the PDFs as grids compliant with the LHAPDF [19] format, that can be employed at a later stage.
Moreover, regardless of whether the numerical solution is computed at runtime or read from the
grids, eMELA always switches to the analytical solution for I → 1. eMELA can also provide one
with PDFs with beamstrahlung effects, according to the procedure presented in Ref. [13].

In Ref. [17], eMELA has been linked toMadGraph5_aMC@NLO [20, 21] in order to reach NLL
accuracy for the PDFs and NLO accuracy (in the full electroweak theory) for the short-distance
cross section, and obtain first NLL+NLO predictions for physical observables at lepton colliders.
While MadGraph5_aMC@NLO is widely used in the context of LHC simulations, it can also be
employed for lepton collisions. Indeed, many results for leptonic collisions were already provided
in Ref. [20], including NLO-QCD corrections but limited to the case of a strictly fixed centre-of-
mass energy. The extension to the case with QED ISR and beamstrahlung has been documented in
Ref. [13], whereas Ref. [17] describes the inclusion of NLO EW corrections to the short distance
cross section, allowing for the computation of NLL+NLO observables after linking to eMELA.

1Available here: https://github.com/gstagnit/eMELA.
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Here we focus on a single process, 4+4− → ,+,−, at
√
B = 500 GeV and we present results

for the cumulative cross section defined as

f(gmin) =
∫

3fΘ

(
gmin ≤

"2
, +, −

B

)
, (4)

with "2
, +, − the invariant mass squared of the pair of final state vector bosons. The other 2 → 2

processes considered in Ref. [17] (e.g. 4+4− → CC̄) behave in a similar way, and we find qualitatively
similar results in the range

√
B ∈ [50, 500] GeV. Ratios of f(gmin) for different settings of the PDFs

are shown in Fig. 1 as a function of gmin. The region close to gmin = 1 has to be taken with a grain
of salt because it features unresummed purely soft logs.
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(a) Impact of next-to-leading logarithms.
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(b) Dependence on factorisation scheme.
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(c) Dependence on renormalisation scheme.
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(d) Impact of photon-induced contributions.

Figure 1: Cumulative cross section (4) for the 4+4− → ,+,− process at
√
B = ` = 500 GeV. Several

choices of accuracy (1a), factorisation (1b) and renormalisation (1c) schemes for the PDFs are shown. The
notation adopted in the legends of the plots is: {accuracy of short-distance cross section}, {accuracy of
PDF} [{factorisation scheme}, {renormalisation scheme}]. The accuracy of the short-distance cross section
is always NLO in the full electroweak theory. The impact of the contribution coming from the WW channel
(“+W”) is shown as well in (1d).

In Fig. 1a, the impact of NLL vs. LL PDFs is shown for three different choices of renor-
malisation schemes. It is clear that the corrections due to next-to-leading logarithms follow a
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non-trivial pattern, impossible to account in some universal manner. Hence, NLL-accurate PDFs
are phenomenologically important for precision studies.

In Fig. 1b, we show the dependence of the cumulative cross section on the adopted factorisation
scheme. Such a dependence is of the order of 10−4-10−3, to be considered as a systematic error
associated to the calculation. Note that the NLL electron PDF largely differs (O(1)) between the
MS and the Δ scheme, with the NLL electron PDF in the Δ scheme closer to the LL value [17].
Hence we can conclude that there are large cancellations between the PDFs and the short-distance
cross section in the MS scheme, cancellations which are absent for the Δ scheme.

In Fig. 1c, we show the dependence of the cumulative cross section on the adopted renormal-
isation scheme. By comparing with Fig. 1b, we see that the renormalisation scheme dependence
mostly leads to a normalisation effect, and it is significantly larger than the factorisation scheme
one. The choice of the renormalisation scheme should be regarded as an informed choice rather
than a systematic of the calculation.

Finally, in Fig. 1d, we consider the impact of photon-induced contributions for the process at
hand. Such contributions are clearly visible in the region of small gmin, leading to a 1-2% difference
between predictions. It is a physical effect independent on the choice of the renormalisation or
factorisation scheme. The behaviour can be explained by a couple of considerations: at the Born
level i.e. O(U2), the production of ,+,− features a WW channel; the photon PDF ΓW is only
suppressed by a power of U w.r.t. Γ4− , with a peak at small-I values. However, the magnitude
of such an effect is process and observable dependent e.g. the impact of the WW channel for CC̄
production is practically negligible at the cumulative cross section level.

We refer the interested reader to Refs. [13, 15–18] for additional details about predictions
at high-energy 4+4− colliders within collinear factorisation and the usage of NLL PDFs. As a
final remark, we would like to stress that moving towards NLL is important not only to improve
on the accuracy of our predictions, but also needed for an assessment of sources of theoretical
uncertainties.

The work presented in this contribution benefited from collaboration with V. Bertone, M. Cac-
ciari, S. Frixione, M. Zaro and X. Zhao, to whom I am grateful. This work has received funding
from the Swiss National Science Foundation (SNF) under contract 200020-204200.
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