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Vector boson scattering (VBS) plays a central role in the search for new physics at collider
experiments such as ATLAS and CMS at the LHC. Usually predictions for this kind of processes
are obtained using perturbative approaches in fixed gauges. Herewe present a fully gauge-invariant
study of VBS in the scalar-channel involving a SM-like Higgs with finite extent. To this end, we
combine results obtained in a reduced SM setup from (augmented) perturbation theory with those
from non-perturbative lattice simulations.
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1. Introduction

Vector boson scattering (VBS) has gained a lot of interest in the recent years, especially as a
possible path to search for physics beyond the standard model (BSM) [1, 2]. Within the standard
model VBS can be very well described using only the electroweak sector in combination with the
Brout-Englert-Higgs (BEH) effect. In a standard perturbative framework scattering quantities, like
differential or integrated cross-sections as well as phase-shifts, can be reliably obtained within this
subset of the SM [2]. Modifications to VBS from next-to-leading-order (NLO) effects of additional
SM-processes, like QCD, influence these quantities by ∼10 % at the LHC, see e. g. [3].

In perturbation theory (PT) the elementary fields of the theory are considered as the physical
degrees of freedom. This cannot be the case [4], since they are charged under the weak gauge
group and thus gauge-dependent and unphysical [4]. Instead, it is necessary to choose a completely
gauge-invariant approach to obtain physical scattering quantities. As it turns out this requires using
composite objects (i.e. bound states) as the elementary degrees of freedom, see [5] for a review.

Here we focus on the fully gauge-invariant description of VBS for a reduced standard model
setup. We introduce the necessary framework for the gauge-invariant description in section 2, the
Fröhlich-Morchio-Strocchi-mechanism (FMS) [4] and augmented perturbation theory (APT) [5–7].
From this the expected modifications of the scattering observables due to the finite extent of the
involved particles are obtained. Additionally, we also show results from lattice simulations. The
approaches are then collected in section 3 and compared. This gives us finally a clear picture of
VBS. For a more detailed discussion see [8].

2. A Higgs with finite extent

A fully gauge-invariant approach to scattering processes requires using composite objects as
the elementary degrees of freedom. This lies in the nature of the BEH construction itself [5]. To
illustrate the issue consider a scalar field φ in the fundamental representation of the gauge group, in
the electroweak sector SU(2)W . This field is further restricted by a potential of the form

V(φ) = λ
(
φ†φ − f 2

)2
, (1)

which is invariant under the gauge transformation G(x), with φ(x) → G(x)φ(x). The potential has
a non-trivial minimum at φ†φ = f 2. For the usual perturbative procedure of the BEH effect [5, 9]
one needs to select a particular minimum of the potential by fixing the gauge, e.g. ’t Hooft gauge,
followed by a shift of the field according to φ → v + η, where |v | = f is the vacuum expectation
value (VEV). This results in mass terms at tree-level for the gauge-bosons and is commonly called
“spontaneous gauge-symmetry breaking”.

Consequently, the elementary fields are used to obtain cross-sections by calculating the cor-
responding matrix elements, see e.g. [9]. The problem with this approach is that the shift in the
BEH effect requires gauge-fixing, which indeed is the only possibility to do so. So in fact these
elementary fields are gauge-dependent, which renders these states unphysical [4]. This problem is
perturbatively circumvented by applying a Becchi-Rouet-Stora-Tyutin (BRST) construction [9] to
identify the physical degrees of freedom. Beyond perturbation theory this construction does not
hold anymore due to the existence of Gribov copies even at arbitrary weak coupling [5, 10].
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The only remaining way out is therefore to use inherently gauge-invariant (i.e. composite)
operators as the physical degrees of freedom. For the process of VBS the two most relevant
operators with the correct spin and parity quantum numbers JP of the Higgs- and gauge-bosons are

OH = O0+ = φ†φ OW a
µ = O1− a

µ = φ†Da
µφ , (2)

with Da
µ the covariant derivative. Since the physical degrees of freedom are described by composite

operators we see that the BEH effect requires them to be bound states, and thus having a non-zero
radius. They are not point-like objects anymore as in standard PT.

To obtain scattering quantities for these operators it seems now unavoidable to use nonpertur-
bative methods, like it is done in QCD. However, when considering instead the usual approach to
the BEH effect this raises the question of why it agrees so strikingly well with experimental results
[9] while neglecting the inherently nonperturbative structure. This suggests some correspondence
between the usual perturbative treatment and the fully gauge-invariant approach.

Consider the weak sector of the SM, which contains exactly these building blocks. Our
previous arguments suggest that instead of elementary fields the operators of eq. (2) should be
used as asymptotic states to obtain correlators, which needs nonperturbative methods in principle.
However, due to the BEH-effect it is possible to augment perturbation theory by an additional step
that preserves gauge-invariance, while still allowing perturbative access to the quantities of interest.
The full procedure will therefore be called augmented perturbation theory (APT) and consists of
two steps: the FMS-expansion [4, 5] followed by usual PT.

As an example we take the propagator of a physical Higgs-boson given by
〈
OH (x)†OH (y)

〉
.

The first step of APT is to insert the usual BEH split in a convenient gauge. This leaves us with a
sum of (individually gauge-dependent) correlation functions, e.g.〈[

φ†φ
]
(x)†

[
φ†φ

]
(y)

〉
=

〈
[vη](x)†[vη](y)

〉
+

〈[
η†η

]
(x)†[vη](y) + (x)↔(y)

〉
+

〈[
η†η

]
(x)†

[
η†η

]
(y)

〉
.

(3)
In a second step a double expansion in v and the other coupling constants can be made. At leading
order in v, the propagator of the composite operator OH therefore coincides to all orders in all other
couplings with the elementary Higgs propagator

〈
η(x)†η(y)

〉
, and especially has the same mass and

width [7]. This procedure can be applied to any correlation function, and also to matrix elements
as will be seen in section 3. Due to the finite extent of the observable particles, modifications to
scattering quantities from off-shell contributions are expected compared to usual PT.

So far we have motivated that the gauge-invariant description of weakly interacting particles
in the SM should give them some finite radius. Although, this will not change masses and decay-
widths of the particles involved in VBS it still may modify cross-sections. In addition, some BSM
models, like composite Higgs, directly introduce a finite extent to the particles involved in the VBS
process. Therefore, regardless of the previous motivations, it is worthwhile to consider here what
modifications are to be expected from a non-vanishing radius of the involved physical particles.

In principle to get measurable predictions it is needed to obtain (differential) cross-sections
from fundamental theory. Therefore, experiment and theory can be connected via the equation

dσ
dΩ
=

1
64π2s

|M|2 (4)
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(a) phase shift (b) differential cross-section (c) integrated cross-section

Figure 1: Expected modifications to VBS for scattering properties in the elastic region due to a Higgs with
finite extent. Obtained for a reduced SM-setup with a SM-like Higgs and scattering length a−1

0 ≈ −40 GeV.

with dσ
dΩ the differential cross-section,

√
s the center of mass energy andM the transition matrix.

This matrix can be obtained for any theory and process from the possible exchange diagrams and
corresponding Feynman rules up to arbitrary order in (A)PT [5, 6, 9]. Here we are explicitly
interested in VBS in the scalar channel which additionally requires a partial wave analysis. This
can be achieved by deconstructing the matrix according to

M = 16π
∑
J

(2J + 1) fJPJ (cos θ) , (5)

fJ =
1

32π(2J + 1)

∫ 1

−1
M PJ (cos θ) d(cos θ) = ei δJ sin(δJ ) and tan(δJ ) =

fJ
1 + i fJ

, (6)

with fJ the partial transition amplitude, PJ the Legendre polynomials and δJ the phase shift. For
VBS at the here investigated Born level it is additionally necessary to perform a reunitarization
[8, 11], requiring to replace the initial fJ by 1/(Re(1/ fJ ) − i).

From eqs. (5) and (6) it can be seen that the phase shift δJ in the respective partial wave fully
characterizes the scattering process. Independent of the perturbative level, the finite extent of the
particles is therefore going to modify the phase shift and the transition amplitude by

tan(δJ )→ tan(δJ ) − tan(∆δJ ) and fJ→ fJ −
tan(∆δJ )

[tan(δJ ) + i][tan(∆δJ ) − tan(δJ ) − i]
= fJ − ∆ fJ

(7)
respectively. The transition matrix is consequently also split intoM →M fJ −M∆ fJ . The ratio of
the modified differential cross-section to the one obtained from (A)PT changes thus to(

dσ
dΩ

)
mod.

/(
dσ
dΩ

)
PT
=

��M fJ −M∆ fJ

��2��M fJ

��2 =

����� (M fJ −M∆ fJ
)2

M2
fJ

����� = ����1 − 2M∆ fJ
M fJ

(
1 −
M∆ fJ

2M fJ

)���� . (8)

Finally, the influence of the finite extent close to the elastic threshold can be parameterized conve-
niently by introducing the scattering length a0

tan(∆δJ (s)) ≈ −a0

√
s − 4m2

W , (9)

which is negative for a particle with finite extent and a0 ≥ 0 for point-like objects.
In fig. 1 we show the expected modifications of the different quantities for the VBS process

with a finite-sized Higgs particle. The perturbative values have been obtained at Born-level for a
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reduced SM-setup with mW = mZ = 80.375 GeV and mH = 125 GeV. Modifications appear only
close to the threshold region and become negligible for higher momenta. Therefore, the differential
and integrated cross-section in figs. 1b and 1c respectively, show the typical profile for probing
particles with some finite extent. We see suppressed forward- and backward scattering and enhanced
scattering around zero rapidity η for small center-of-mass energies. This gives a qualitative picture.

3. Nonperturbative results

(a) phase shift (b) differential cross-section (c) integrated cross-section

Figure 2: Phase shift from lattice simulations and corresponding differential/integrated cross-section as a
function of energy and pseudo-rapidity η. The differential cross-section is normalized to the APT prediction.

We study now the same process using lattice simulations, see [8] for details, to compare it with
the analytic expectations obtained in section 2 and to check the reliability of the FMS-approach.
The characteristics of this theory required us to simulate at very coarse lattices and relatively large
weak-coupling compared to the SM.

The main obstacle when comparing results from (A)PT with lattice simulations is that all
possible initial states on the lattice will mix. In the case of VBS this means that the scattering
matrix needs to be constructed from all possible two 1− states in an s-wavewith zero totalmomentum
and net-zero weak/custodial charge, i.e. W±W∓ → W±W∓, W±W∓ ↔ Z Z 1 and Z Z → Z Z . This
results in a sum over all 81 possible full 4-point vertices of the vector-operator from (2) and yields
a perturbative expression [8] for the transition matrix that can be compared to the lattice results.

In the simulation, we obtained a mass for the Higgs boson of mH = 148+6
−20GeV. From the

considerations in section 2 we expect that this state is described by a particle with non-vanishing
extent, andwould result in a negative phase shift close to the threshold. In fig. 2awe see this expected
behavior with the data lying significantly and consistently below zero close to the threshold. In
addition, the naive perturbative prediction does not agree with the data at all here. Therefore, we
used themethod as described in section 2 to include the finite extent of the Higgs-boson and obtained
a scattering length of roughly −40 GeV. Remarkably this result is in agreement with a previous
investigation of the weak radius for the physical vector bosons [12], although using completely
different techniques. Figures 2b and 2c show the corresponding differential and integrated cross-
section. Here we see the picture that we have predicted in section 2 for a Higgs with a finite radius.
Therefore, lattice simulations indeed support that in the scalar channel a bound state appears,
described e. g. by eq. (2), rather than the elementary field itself. It is thus possible to study this
from deviations of VBS cross-sections at experiments, at least in principle.

1Note that the Z is degenerate with the W±-bosons in the reduced SM-setup we are using.
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4. Conclusions and outlook

We have presented a fully gauge-invariant study of the VBS process. To get a conclusive
picture we tackled the problem with two different approaches once using augmented perturbation
theory (APT) and once using lattice simulations. The gauge-invariant approach requires using
manifestly gauge-invariant operators as initial and final states rather than elementary fields, as is
usually done in PT. However, this additionally leads to the asymptotic states being bound-states
with a non-vanishing extent. Therefore, this allows us to simultaneously probe the theoretical
foundations of the standard model, as well as deriving a description for VBS with any kind of
bound-states involved, like e.g. a composite Higgs from BSM. We showed that the finite extent
modifies VBS close to threshold as expected for bound-state scattering and can thus be used as a
possible avenue for experiments to search for new physics. In the non-perturbative approach we
have seen a significant deviation of the data from the usual perturbative prediction which further
supports the previous statements. By including the finite extent of the Higgs boson we were able to
compensate the discrepancy and find again the expected behavior for VBS.
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