Two-loop QED corrections to the di-muon production in electron-positron annihilation, and related processes

Jonathan Ronca*
Dipartimento di Matematica e Fisica, Università degli Studi di Roma Tre Via della Vasca Navale 84, 00146 Roma, Italy
E-mail: jonathan.ronca@roma3.infn.it

This contribution aims at elucidating the method we employed in the calculation of double-virtual interferences of di-muon production via electron-positron annihilation at Next-to-Next-to-Leading Order (NNLO) in Quantum Electrodynamics (QED), and heavy-quark pair production via lightquark annihilation at NNLO Quantum Chromodynamics (QCD).

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

[^0]
1. Introduction

The Muon g-2 collaboration at Fermilab has recently measured the anomalous magnetic moment of the muon, showing compatibility with the earlier findings obtained at Brookhaven National Lab [3-5]. The anomalous magnetic moment of the muon, $(g-2)_{\mu}$, shows a 4.2σ deviation from the Standard Model (SM) prediction [6]. Recently, a novel experiment, MUonE [7, 8], has been proposed at CERN, with the goal of measuring the running of the effective electromagnetic coupling at low momentum transfer in the space-like region. To extract the running of the effective electromagnetic coupling from the experimental data, the pure perturbative contribution to the $e-\mu$ elastic scattering cross section in Quantum Electrodynamics (QED) must be controlled at least up Next-to-Next-to-Leading Order (NNLO) in the fine-structure constant [9].

There are two processes that can be related to the $e-\mu$ elastic scattering: its cross-related QED dimuon production via electron-positron annihilation and its analogous in Quantum Chromodynamics (QCD) $t \bar{t}$ production via quark-antiquark annihilation. The latter process was known numerically and partial analytical results were available [10-16].

In the following, we describe the method we employed to obtain the fully analytical expression for the two-loop correction to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$at NNLO QED and the $q \bar{q} \rightarrow t \bar{t}$ at NNLO QCD. Plots showing the finite part of such corrections will be shown. This proceeding resumes the results of Refs. [1] and [2].

2. Four-fermion scattering process

We consider the process

$$
\begin{equation*}
f\left(p_{1}\right)+\bar{f}\left(p_{2}\right) \rightarrow F\left(p_{3}\right)+\bar{F}\left(p_{4}\right) \tag{1}
\end{equation*}
$$

where $p_{1}^{2}=p_{2}^{2}=0$ and $p_{3}^{2}=p_{4}^{2}=M^{2}$. The kinematic invariants are define as $s=\left(p_{1}+p_{2}\right)^{2}$, $t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{2}-p_{3}\right)^{2}$, where $s+t+u=2 M^{2}$ because of momentum conservation. In particular, we consider the case when $f=e^{-}, F=\mu^{-}$in QED and $f=q, F=t$ in QCD.

The scattering amplitude \mathcal{A} for this process admits a perturbative expansion with respect to the coupling constant α, such that

$$
\begin{equation*}
\mathcal{A}=4 \pi \alpha\left[\mathcal{A}^{(0)}+\left(\frac{\alpha}{\pi}\right) \mathcal{A}^{(1)}+\left(\frac{\alpha}{\pi}\right)^{2} \mathcal{A}^{(2)}+O\left(\alpha^{3}\right)\right] . \tag{2}
\end{equation*}
$$

In this context, α can be either the electromagnetic coupling or the strong coupling (for energies such that QCD can be treated perturbatively).

We are interested in the following interference terms:

$$
\begin{equation*}
\mathcal{M}^{(0)}=\frac{1}{4} \sum_{\substack{\text { colours } \\ \text { spins }}}\left|\mathcal{A}^{(0)}\right|^{2}, \quad \mathcal{M}^{(n)}=\frac{1}{4} \sum_{\substack{\text { colours } \\ \text { spins }}} 2 \operatorname{Re}\left(\mathcal{A}^{(0) *} \mathcal{A}^{(n)}\right), \tag{3}
\end{equation*}
$$

where $\mathcal{A}^{(0)}$ is the Born term. These interferences can be decomposed into gauge invariant contributions w.r.t. the number of light and heavy flavours (n_{l} and n_{h} respectively) and the number of
colours N_{c} as follows:

$$
\begin{align*}
& \mathcal{M}^{(1)}=A^{(1)}+n_{l} B_{l}^{(1)}+n_{h} C_{h}^{(1)} \\
& \mathcal{M}^{(2)}=A^{(2)}+n_{l} B_{l}^{(2)}+n_{h} C_{h}^{(2)}+n_{l}^{2} D_{l}^{(2)}+n_{l} n_{h} E_{h l}^{(2)}+n_{h}^{2} F_{h}^{(2)}, \tag{4}
\end{align*}
$$

for the QED process, and

$$
\begin{align*}
\mathcal{M}^{(1)}=2\left(N_{c}^{2}-1\right) & \left(N_{c} A^{(1)}+\frac{B^{(1)}}{N_{c}}+n_{l} C_{l}^{(1)}+n_{h} C_{h}^{(1)}\right) \\
\mathcal{M}^{(2)}=2\left(N_{c}^{2}-1\right) & \left(A^{(2)} N_{c}^{2}+B^{(2)}+\frac{C^{(2)}}{N_{c}^{2}}+n_{l} D_{l}^{(2)} N_{c}+n_{h} D_{h}^{(2)} N_{c}+n_{l} \frac{E_{l}^{(2)}}{N_{c}}+n_{h} \frac{E_{h}^{(2)}}{N_{c}}\right. \tag{5}\\
& \left.+n_{l}^{2} F_{l}^{(2)}+n_{l} n_{h} F_{h l}^{(2)}+n_{h}^{2} F_{h}^{(2)}\right),
\end{align*}
$$

for the QCD one.

3. Evaluating the amplitude

The generation of the bare amplitude $\mathcal{A}_{\mathrm{b}}^{(n)}$ is performed with FeynArts [17] and FeynCalc [18]. We identify 6 one-loop and 69 two-loop diagrams for the QED process and 10 one-loop and 218 two-loop diagrams for the QCD one. In general, the amplitudes $\mathcal{A}_{\mathrm{b}}^{(n)}$ are Ultraviolet (UV) and Infrared (IR) divergent in four space-time dimensions; in order to regularise such divergences, dimensional regularisation is introduced, promoting the space-time dimension $d=4-2 \epsilon$ to be a free parameter. The physical limit $d \rightarrow 4$ (i.e. $\epsilon \rightarrow 0$) can be taken after the renormalisation procedure.

After computing the explicit interferences of the loop diagrams with the Born amplitude, we perform the spin-colour averaged sum and the Dirac algebra of the numerators, and $\mathcal{M}_{\mathrm{b}}^{(n)}$ takes the following expression:

$$
\begin{equation*}
\mathcal{M}_{\mathrm{b}}^{(n)}=\int \prod_{i=1}^{n} \frac{d^{d} k_{i}}{(2 \pi)^{d}} \sum_{G} \frac{\mathcal{N}_{G}\left(\mathbf{k}, \mathbf{p}, M^{2}\right)}{\prod_{\sigma \in G} D_{\sigma}\left(\mathbf{k}, \mathbf{p}, M^{2}\right)} \tag{6}
\end{equation*}
$$

Integrands in Eq. (6) are rational polynomial of the masses and the scalar product between momenta. We apply the so-called Adaptive Integrand Decomposition (AID) [19]. Its key ingredient is the splitting of the d-dimensional space-time into the sub-space generated by the external momenta and its transverse one: $d=d_{\|}+d_{\perp}$. AID is completely automated in the Mathematica package AIDA [20], which carries out the integrand decomposition down to a combination of Feynman Integrals whose numerator depend on irreducible scalar products only.

Since integrals have more relations than integrands, Integration-by-Parts identities (IBPs) [21, 22] drastically reduce the number of Feynman integrals down to a minimal set of Master Integrals (MIs) $\mathbf{I}^{(n)}$, such that

$$
\begin{equation*}
\mathcal{M}_{\mathrm{b}}^{(n)}=\mathbb{C}^{(n)} \cdot \mathbf{I}^{(n)}, \tag{7}
\end{equation*}
$$

where $\mathbb{C}^{(n)}$ is a vector of rational function depending on s, t, M^{2} and the dimension d. IBPs are generated and applied on the integrals of Eq. (6) by means of public code Reduze [23].

The complete set of MIs $\mathbf{I}^{(n)}$ has been computed analytically in [24, 25] by using the differential equation method via Magnus Exponential. $\mathbf{I}^{(n)}$ admits a Laurent expansion around $\epsilon=0$, where its coefficient are expressed in terms of Generalized PolyLogarithms (GPLs), iteratively defined as

$$
\begin{equation*}
G\left(w_{n}, \ldots, w_{1} ; \tau\right)=\int_{0}^{\tau} \frac{d t}{t-w_{n}} G\left(w_{n-1}, \ldots, w_{1} ; t\right), \quad G\left(w_{1} ; \tau\right)=\log \left(1-\frac{\tau}{w_{1}}\right) \tag{8}
\end{equation*}
$$

where $w_{i}=w_{i}\left(s, t, M^{2}\right)$ are called letters, and depend only on the physical scales of the process. Notice that, for both QED and QCD processes, the set of MIs is completely analogous.

The interferences $\mathcal{M}_{\mathrm{b}}^{(n)}$ are still UV divergent. Renormalising the bare fermion fields ψ_{b} and the bare mass M_{b} in the on-shell scheme, and the bare coupling α_{b} in the $\overline{\mathrm{MS}}$ scheme

$$
\begin{equation*}
\psi_{\mathrm{b}}=\sqrt{Z_{\psi}} \psi, \quad M_{\mathrm{b}}=\sqrt{Z_{M}} M, \quad \alpha_{\mathrm{b}}=Z_{\alpha}^{\overline{\mathrm{MS}}} \alpha, \quad Z_{i}=1+\sum_{j=1}\left(\frac{\alpha}{\pi}\right)^{j} \delta Z_{i}^{(j)} \tag{9}
\end{equation*}
$$

one obtains UV finite quantities $\mathcal{A}^{(n)}$ and interferences $\mathcal{M}^{(n)}$ by considering the renormalised amplitude \mathcal{A}, such that:

$$
\begin{align*}
\mathcal{A} & =Z_{f} Z_{F} \mathcal{A}\left(\alpha_{\mathrm{b}}(\alpha), M_{\mathrm{b}}(\alpha)\right), \quad \mathcal{A}^{(n)}=\mathcal{A}_{\mathrm{b}}^{(n)}+\delta \mathcal{A}^{(n)} \\
\mathcal{M}^{(n)} & =\mathcal{M}_{\mathrm{b}}^{(n)}+\delta \mathcal{M}^{(n)}, \quad \delta \mathcal{M}^{(n)}=\frac{1}{4} \sum_{\substack{\text { colours } \\
\text { spins }}} \operatorname{Re}\left(\mathcal{A}_{\mathrm{b}}^{(0) *} \delta \mathcal{A}_{\mathrm{b}}^{(n)}\right), \tag{10}
\end{align*}
$$

where

$$
\begin{gather*}
\delta \mathcal{A}^{(0)}=0, \quad \delta \mathcal{A}^{(1)}=\left(\delta Z_{\alpha}^{(1)}+\delta Z_{F}^{(1)}\right) \mathcal{A}_{\mathrm{b}}^{(0)} \\
\delta \mathcal{A}^{(2)}=\left(2 \delta Z_{\alpha}^{(1)}+\delta Z_{F}^{(1)}\right) \mathcal{A}_{\mathrm{b}}^{(1)}+\left(\delta Z_{\alpha}^{(2)}+\delta Z_{F}^{(2)}+\delta Z_{f}^{(2)}+\delta Z_{\alpha}^{(1)} \delta Z_{F}^{(2)}\right) \mathcal{A}_{\mathrm{b}}^{(0)} \tag{11}\\
+\delta Z_{M}^{(1)} \mathcal{A}_{\mathrm{b}}^{(1, \operatorname{massCT})}
\end{gather*}
$$

Explicit expressions for the $\delta Z_{i}^{(j)}$ can be found in Refs. [1] and [2].

4. Finite terms

The analytical expansion of the renormalised interferences $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$ are expressed as

$$
\begin{equation*}
\mathcal{M}^{(1)}=\sum_{k=-2}^{1} \mathcal{M}_{k}^{(1)} \epsilon^{k}+O\left(\epsilon^{2}\right), \quad \mathcal{M}^{(2)}=\sum_{k=-4}^{0} \mathcal{M}_{k}^{(2)} \epsilon^{k}+O(\epsilon) \tag{12}
\end{equation*}
$$

In Figures 1 and 2 we present the plot of their finite part $\mathcal{M}_{0}^{(1)}$ and $\mathcal{M}_{0}^{(2)}$ in terms of the variables

$$
\begin{equation*}
\eta=\frac{s}{4 M^{2}}-1, \quad \phi=-\frac{t-M^{2}}{s} \tag{13}
\end{equation*}
$$

5. Conclusions

We have presented the method we employed in the calculation of the two-loop NNLO QED di-muon production via electron-positron annihilation and the two-loop NNLO QCD $t \bar{t}$-production via quark-antiquark annihilation. We provided plots of the finite part of the NNLO contributions considered. In particular, the latter contributions have been computed on a grid of 1600 points, available by the ancillary files of [2].

Figure 1: Three-dimensional plots of the coefficients (finite part) appearing in the decomposition of the renormalized one- (1a) and two-loop (1b) amplitude of $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, defined in Eq. (4).

Figure 2: Three-dimensional plots of the coefficients (finite part) appearing in the decomposition of the renormalized one- (2a) and two-loop (2b) amplitude of $q \bar{q} \rightarrow t \bar{t}$, defined in Eq. (5).

References

[1] R. Bonciani et al., Phys. Rev. Lett. 128 (2022) 022002, [2106.13179].
[2] M. K. Mandal et al., JHEP 09 (2022) 129, [2204.03466].
[3] G. W. Bennett et al., Phys. Rev. Lett. 89 (2002) 101804, [hep-ex/0208001].
[4] G. W. Bennett et al., Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].
[5] B. Abi et al., Phys. Rev. Lett. 126 (2021) 141801, [2104.03281].
[6] T. Aoyama et al., Phys. Rept. 887 (2020) 1-166, [2006.04822].
[7] C. M. Carloni Calame et al., Phys. Lett. B746 (2015) 325-329, [1504.02228].
[8] G. Abbiendi et al., Eur. Phys. J. C77 (2017) 139, [1609.08987].
[9] P. Banerjee et al., Eur. Phys. J. C 80 (2020) 591, [2004. 13663].
[10] M. Czakon, Phys. Lett. B 664 (2008) 307-314, [0803.1400].
[11] P. Bärnreuther et al., JHEP 02 (2014) 078, [1312.6279].
[12] L. Chen et al., JHEP 03 (2018) 085, [1712.08075].
[13] R. Bonciani et al., JHEP 07 (2008) 129, [0806.2301].
[14] R. Bonciani et al., JHEP 01 (2011) 102, [1011.6661].
[15] R. Bonciani et al., JHEP 12 (2013) 038, [1309.4450].
[16] A. von Manteuffel et al., JHEP 10 (2013) 037, [1306. 3504].
[17] T. Hahn, Comput. Phys. Commun. 140 (2001) 418-431, [hep-ph/0012260].
[18] R. Mertig et al., Comput. Phys. Commun. 64 (1991) 345-359.
[19] P. Mastrolia et al., JHEP $\mathbf{0 8}$ (2016) 164, [1605.03157].
[20] P. Mastrolia et al. In preparation.
[21] K. G. Chetyrkin et al., Nucl. Phys. B192 (1981) 159-204.
[22] S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087-5159, [hep-ph/0102033].
[23] A. von Manteuffel et al. 1201.4330.
[24] P. Mastrolia et al., JHEP 11 (2017) 198, [1709.07435].
[25] S. Di Vita et al., JHEP 09 (2018) 016, [1806.08241].

[^0]: *Based on a collaboration with M. K. Mandal, P. Mastrolia and W. J. Torres Bobadilla, [1] and R. Bonciani, A Broggio, S. Di Vita, A. Ferroglia, M. K. Mandal, P. Mastrolia, L. Mattiazzi, A.Primo, U. Schubert, W.J. Torres Bobadilla and F. Tramontano [2]

