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Two-loop QED corrections to the di-muon production in electron-positron annihilation, and related processes

1. Introduction

The Muon g-2 collaboration at Fermilab has recently measured the anomalous magnetic
moment of the muon, showing compatibility with the earlier findings obtained at Brookhaven
National Lab [3–5]. The anomalous magnetic moment of the muon, (𝑔−2)𝜇, shows a 4.2𝜎 deviation
from the Standard Model (SM) prediction [6]. Recently, a novel experiment, MUonE [7, 8], has
been proposed at CERN, with the goal of measuring the running of the effective electromagnetic
coupling at low momentum transfer in the space-like region. To extract the running of the effective
electromagnetic coupling from the experimental data, the pure perturbative contribution to the 𝑒-𝜇
elastic scattering cross section in Quantum Electrodynamics (QED) must be controlled at least up
Next-to-Next-to-Leading Order (NNLO) in the fine-structure constant [9].

There are two processes that can be related to the 𝑒-𝜇 elastic scattering: its cross-related QED di-
muon production via electron-positron annihilation and its analogous in Quantum Chromodynamics
(QCD) 𝑡𝑡 production via quark-antiquark annihilation. The latter process was known numerically
and partial analytical results were available [10–16].

In the following, we describe the method we employed to obtain the fully analytical expression
for the two-loop correction to 𝑒+𝑒− → 𝜇+𝜇− at NNLO QED and the 𝑞𝑞 → 𝑡𝑡 at NNLO QCD. Plots
showing the finite part of such corrections will be shown. This proceeding resumes the results of
Refs. [1] and [2].

2. Four-fermion scattering process

We consider the process

𝑓 (𝑝1) + 𝑓 (𝑝2) → 𝐹 (𝑝3) + 𝐹 (𝑝4). (1)

where 𝑝2
1 = 𝑝2

2 = 0 and 𝑝2
3 = 𝑝2

4 = 𝑀2. The kinematic invariants are define as 𝑠 = (𝑝1 + 𝑝2)2,
𝑡 = (𝑝1 − 𝑝3)2 and 𝑢 = (𝑝2 − 𝑝3)2, where 𝑠 + 𝑡 + 𝑢 = 2𝑀2 because of momentum conservation. In
particular, we consider the case when 𝑓 = 𝑒−, 𝐹 = 𝜇− in QED and 𝑓 = 𝑞, 𝐹 = 𝑡 in QCD.

The scattering amplitude A for this process admits a perturbative expansion with respect to
the coupling constant 𝛼, such that

A = 4𝜋𝛼
[
A (0) +

(𝛼
𝜋

)
A (1) +

(𝛼
𝜋

)2
A (2) + O(𝛼3)

]
. (2)

In this context, 𝛼 can be either the electromagnetic coupling or the strong coupling (for energies
such that QCD can be treated perturbatively).

We are interested in the following interference terms:

M (0) =
1
4

∑︁
colours
spins

|A (0) |2, M (𝑛) =
1
4

∑︁
colours
spins

2Re
(
A (0)∗A (𝑛)

)
, (3)

where A (0) is the Born term. These interferences can be decomposed into gauge invariant contri-
butions w.r.t. the number of light and heavy flavours (𝑛𝑙 and 𝑛ℎ respectively) and the number of
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colours 𝑁𝑐 as follows:

M (1) = 𝐴(1) + 𝑛𝑙𝐵
(1)
𝑙

+ 𝑛ℎ𝐶
(1)
ℎ

M (2) = 𝐴(2) + 𝑛𝑙𝐵
(2)
𝑙

+ 𝑛ℎ𝐶
(2)
ℎ

+ 𝑛2
𝑙 𝐷

(2)
𝑙

+ 𝑛𝑙𝑛ℎ𝐸
(2)
ℎ𝑙

+ 𝑛2
ℎ𝐹

(2)
ℎ

,
(4)

for the QED process, and

M (1) = 2(𝑁2
𝑐 − 1)

(
𝑁𝑐𝐴

(1) + 𝐵 (1)

𝑁𝑐

+ 𝑛𝑙𝐶
(1)
𝑙

+ 𝑛ℎ𝐶
(1)
ℎ

)
M (2) = 2(𝑁2

𝑐 − 1)
(
𝐴(2)𝑁2

𝑐 + 𝐵 (2) + 𝐶 (2)

𝑁2
𝑐

+ 𝑛𝑙𝐷
(2)
𝑙

𝑁𝑐 + 𝑛ℎ𝐷
(2)
ℎ

𝑁𝑐 + 𝑛𝑙
𝐸

(2)
𝑙

𝑁𝑐

+ 𝑛ℎ
𝐸

(2)
ℎ

𝑁𝑐

+ 𝑛2
𝑙 𝐹

(2)
𝑙

+ 𝑛𝑙𝑛ℎ𝐹
(2)
ℎ𝑙

+ 𝑛2
ℎ𝐹

(2)
ℎ

)
,

(5)

for the QCD one.

3. Evaluating the amplitude

The generation of the bare amplitude A (𝑛)
b is performed with FeynArts [17] and FeynCalc

[18]. We identify 6 one-loop and 69 two-loop diagrams for the QED process and 10 one-loop and
218 two-loop diagrams for the QCD one. In general, the amplitudes A (𝑛)

b are Ultraviolet (UV)
and Infrared (IR) divergent in four space-time dimensions; in order to regularise such divergences,
dimensional regularisation is introduced, promoting the space-time dimension 𝑑 = 4 − 2𝜖 to be
a free parameter. The physical limit 𝑑 → 4 (i.e. 𝜖 → 0) can be taken after the renormalisation
procedure.

After computing the explicit interferences of the loop diagrams with the Born amplitude, we
perform the spin-colour averaged sum and the Dirac algebra of the numerators, and M (𝑛)

b takes the
following expression:

M (𝑛)
b =

∫ 𝑛∏
𝑖=1

𝑑𝑑𝑘𝑖

(2𝜋)𝑑
∑︁
𝐺

N𝐺 (k, p, 𝑀2)∏
𝜎∈𝐺 𝐷𝜎 (k, p, 𝑀2)

. (6)

Integrands in Eq. (6) are rational polynomial of the masses and the scalar product between
momenta. We apply the so-called Adaptive Integrand Decomposition (AID) [19]. Its key ingredient
is the splitting of the 𝑑-dimensional space-time into the sub-space generated by the external momenta
and its transverse one: 𝑑 = 𝑑∥ + 𝑑⊥. AID is completely automated in the Mathematica package
AIDA [20], which carries out the integrand decomposition down to a combination of Feynman
Integrals whose numerator depend on irreducible scalar products only.

Since integrals have more relations than integrands, Integration-by-Parts identities (IBPs)
[21, 22] drastically reduce the number of Feynman integrals down to a minimal set of Master
Integrals (MIs) I(𝑛) , such that

M (𝑛)
b = C(𝑛) · I(𝑛) , (7)

where C(𝑛) is a vector of rational function depending on 𝑠, 𝑡, 𝑀2 and the dimension 𝑑. IBPs are
generated and applied on the integrals of Eq. (6) by means of public code Reduze [23].
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The complete set of MIs I(𝑛) has been computed analytically in [24, 25] by using the differential
equation method via Magnus Exponential. I(𝑛) admits a Laurent expansion around 𝜖 = 0, where
its coefficient are expressed in terms of Generalized PolyLogarithms (GPLs), iteratively defined as

𝐺 (𝑤𝑛, . . . , 𝑤1; 𝜏) =
∫ 𝜏

0

𝑑𝑡

𝑡 − 𝑤𝑛

𝐺 (𝑤𝑛−1, . . . , 𝑤1; 𝑡), 𝐺 (𝑤1; 𝜏) = log
(
1 − 𝜏

𝑤1

)
, (8)

where 𝑤𝑖 = 𝑤𝑖 (𝑠, 𝑡, 𝑀2) are called letters, and depend only on the physical scales of the process.
Notice that, for both QED and QCD processes, the set of MIs is completely analogous.

The interferences M (𝑛)
b are still UV divergent. Renormalising the bare fermion fields 𝜓𝑏 and

the bare mass 𝑀𝑏 in the on-shell scheme, and the bare coupling 𝛼b in the MS scheme

𝜓b =
√︁
𝑍𝜓𝜓, 𝑀b =

√︁
𝑍𝑀𝑀, 𝛼b = 𝑍MS

𝛼 𝛼, 𝑍𝑖 = 1 +
∑︁
𝑗=1

(𝛼
𝜋

) 𝑗
𝛿𝑍

( 𝑗 )
𝑖

, (9)

one obtains UV finite quantities A (𝑛) and interferences M (𝑛) by considering the renormalised
amplitude A, such that:

A = 𝑍 𝑓 𝑍𝐹A(𝛼b(𝛼), 𝑀b(𝛼)), A (𝑛) = A (𝑛)
b + 𝛿A (𝑛) ,

M (𝑛) = M (𝑛)
b + 𝛿M (𝑛) , 𝛿M (𝑛) =

1
4

∑︁
colours
spins

Re(A (0)∗
b 𝛿A (𝑛)

b ), (10)

where

𝛿A (0) = 0, 𝛿A (1) = (𝛿𝑍 (1)
𝛼 + 𝛿𝑍

(1)
𝐹

)A (0)
b ,

𝛿A (2) = (2𝛿𝑍 (1)
𝛼 + 𝛿𝑍

(1)
𝐹

)A (1)
b + (𝛿𝑍 (2)

𝛼 + 𝛿𝑍
(2)
𝐹

+ 𝛿𝑍
(2)
𝑓

+ 𝛿𝑍
(1)
𝛼 𝛿𝑍

(2)
𝐹

)A (0)
b

+ 𝛿𝑍
(1)
𝑀

A (1,massCT)
b ,

(11)

Explicit expressions for the 𝛿𝑍
( 𝑗 )
𝑖

can be found in Refs. [1] and [2].

4. Finite terms

The analytical expansion of the renormalised interferences M (1) and M (2) are expressed as

M (1) =
1∑︁

𝑘=−2
M (1)

𝑘
𝜖 𝑘 +𝑂 (𝜖2), M (2) =

0∑︁
𝑘=−4

M (2)
𝑘

𝜖 𝑘 +𝑂 (𝜖). (12)

In Figures 1 and 2 we present the plot of their finite part M (1)
0 and M (2)

0 in terms of the variables

𝜂 =
𝑠

4𝑀2 − 1, 𝜙 = − 𝑡 − 𝑀2

𝑠
. (13)

5. Conclusions

We have presented the method we employed in the calculation of the two-loop NNLO QED
di-muon production via electron-positron annihilation and the two-loop NNLO QCD 𝑡𝑡-production
via quark-antiquark annihilation. We provided plots of the finite part of the NNLO contributions
considered. In particular, the latter contributions have been computed on a grid of 1600 points,
available by the ancillary files of [2].
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(a)

(b)

Figure 1: Three-dimensional plots of the coefficients (finite part) appearing in the decomposition of the
renormalized one- (1a) and two-loop (1b) amplitude of 𝑒+𝑒− → 𝜇+𝜇− , defined in Eq. (4).

(a)

(b)

Figure 2: Three-dimensional plots of the coefficients (finite part) appearing in the decomposition of the
renormalized one- (2a) and two-loop (2b) amplitude of 𝑞𝑞 → 𝑡𝑡, defined in Eq. (5).
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