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Identification of hadronic jets originating from heavy flavor quarks in the final state is extremely
important to study the properties of the top quark and the Higgs boson, along with various
searches for signatures of new physics beyond the standard model. The latest developments in the
identification algorithms based on deep learning methods make it an interesting topic also from a
technical perspective. In this article, a summary of various identification algorithms along with
their performance in simulation and pp collision data, in boosted and resolved topologies, will be
presented.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:soureek.mitra@kit.edu
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
9
4
5

Heavy flavor jet tagging in CMS

1. Introduction

Hadronic jets originating from heavy flavor (b/c) quarks arise often in the studies involving
the top quark and the Higgs boson. Identification of these jets is therefore extremely important
to determine the properties and interactions of the Higgs bosons and the top quarks with ultimate
precision and compare them with the predictions obtained from the standard model (SM) of ele-
mentary particle physics. In addition, they also play a crucial role to search for signatures of new
physics beyond the SM at the LHC. Heavy flavor (HF) jets have the following distinct features that
are exploited for their identification.

• Contains secondary vertices (SV) significantly away from the primary vertex (PV) due to
decay of b(c)-hadrons with large mass ≈ 5.3 (1.9) GeV and long lifetime ≈ 1.5 (1.0) ps in
their rest frame.

• High track multiplicity within jets with high impact paramater (IP) relative to the PV.

• Presence of soft leptons within the jets due to significant semileptonic decay probabilities of
the b(c)-hadrons, e.g., B(B− → µ−X) ≈ 20%.

The identification of HF jets usually depends on the tracking information, such as track IPs,
multiplicity etc.; the SV information, such as the SV invariant mass, flight distances relative to the
PV etc.; and the properties of the charged and neutral hadron and soft lepton candidates reconstructed
using particle-flow (PF) algorithm [1]. In addition, some combination of the these are also used.

2. Tagging algorithms

• DeepCSV is a multi-classification deep-neural-network (DNN) algorithm [2] to distinctly
identify b-, c- or light (udsg) jets, based on secondary vertex information obtained with the
Inclusive Vertex Finder (IVF) algorithm and track-based lifetime information, that are then
fed into a fully-connected DNN with 5 hidden layers (i.e. 7 layers altogether) of a width
of 100 nodes each. It has 4 output nodes, namely, b, bb, c and light (udsg); that assign a
probability to a jet for each category.

• DeepJet is a multi-classification DNN algorithm [3] with a more complex architecture
compared to DeepCSV, replacing the track-based lifetime information used in DeepCSV
with more general (low-level) properties of several charged and neutral PF jet constituents,
supplemented also with properties of secondary vertices (using the IVF algorithm) associated
with a jet. For each collection of charged and neutral particles and vertices, separate 1 × 1
convolutional layers are trained with different levels of filters acting on each particle (charged
and neutral) or vertex individually. The output of the convolutional layers is further propagated
to a collection of recurrent layers (LSTMs). The outputs of the LSTMs aremergedwith global
jet properties and propagated through one dense layer with 200 nodes, followed by 7 hidden
dense layers with 100 nodes each. It has 6 output nodes, namely, b, bb, leptonic b, c, uds,
and g, that assign a probability for each jet to belong to any of these categories.
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Truth labels are obtained from hadron flavor definition. Jets from pileup vertices are excluded
during training that is performed on a mixture of simulated QCD multijet and top pair (tt̄) events.
The performances are demonstrated via receiver-operator-characteristic (ROC) curves evaluated for
reconstructed jets using simulated tt̄ events in Figure 1. Three working points are defined based
on the light (udsg) misidentification rates; namely, Loose (10%), Medium (1%), and Tight (0.1%).
The efficiency (ε) of a jet of flavor f in Monte Carlo (MC) simulation and data are defined as:

εMC
f =

NTagged
f

NTotal
f

, εData
f = SFf × ε

MC
f (1)

where, NTagged
f

, NTotal
f

, and SFf represent the number of tagged jets, the number of total jets, and
the calibration scale factor for the jet flavor f , respectively.

3. Performance

3.1 Resolved jets

The calibration of the b-, c-, and light-jets with cone size 0.4 are performed using various
methods based on QCD multijet, tt̄, Drell-Yan (DY), and W + c events [4]. Calibration SFs are
estimated at different working points as well as for the entire discriminant shape. Calibration for c-
tagging discriminant [5] is performed simultaneously in c-enriched (W + c), b-enriched (tt̄ ` + jets),
and light-enriched (DY, QCD multijet) regions. Figure 2 shows the calibration with data using
different methods.

3.2 Trigger

For Run3, a dedicated training is performed online, i.e., with the raw inputs for the high-level
triggers (HLTs) [7]. The online trainingmodel shows better performance in simulated events relative
to the offline training model evaluated on the HLT-level inputs as shown in Figure 1. This online
training model has been deployed for recording data during Run3.

3.3 Boosted jets

A heavy resonance, X , when lorentz-boosted (pX
T � mX), can decay into a pair of HF quarks

with a very small opening angle (≈ 2mX

pX
T
). In such a case, the two daughter quarks cannot be

reconstructed separately into small-radius jets and hence are usually merged into a single large-
radius jet due to the heavy resonance X . The state-of-the-art tagging algorithms, namely, the
double-b and the DeepDoubleX taggers [6] utilize several properties of the boosted jet as inputs,
such as correlations between the flight directions of the b-quarks, N-subjettiness etc. A comparison
of their performance is shown in Figure 3 by studying the ROC curves obtained from a combined
sample of QCD multijet and H→ bb̄(cc̄) events.
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4. Summary

This report contains a summary of the state-of-the-art algorithms for HF jet tagging and their
performance in simulation as well as in data in various event topologies. These algorithms are
trained online with HLT-level inputs in simulated events and deployed for data recording during
Run3. Further developments towards higher performance in simulation as well as in data with
advanced neural-network architectures are in full swing.

Figure 1: The performances of DeepCSV and DeepJet algorithms in simulated tt̄ events is shown for jets
with cone size 0.4 reconstructed offline (left) and at HLT (right).
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Figure 2: The calibration of the DeepJet b- and c-tagging discriminants in data events are shown for jets
with cone size 0.4. The SFb is evaluated at the Loose working point (left) using various methods in QCD
multijet and tt̄ events. The entire shape of the CvsB discriminant is calibrated to data (right) in the W + c
events.
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Figure 3: The performances of double-b and DeepDoubleX taggers are shown in simulated events for
large-radius jets with cone size 0.8.
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