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We have developed a novel approach to reconstruct events detected by a water-based Cherenkov
detector such as Super- and Hyper-Kamiokande using an innovative deep learning algorithm. The
algorithm is based on a generative neural network whose parameters are obtained by minimizing
a loss function. In the training process with simulated single-particle events, the generative neural
network is given the particle identification (ID) or type, 3d-momentum (p), and 3d-vertex position
(V) as the inputs for each training event. Then the network generates a Cherenkov event that is
compared with the corresponding true simulated event. Once the training is done, for the given
Cherenkov event the algorithm will provide the best estimate on ID, p, and V by minimizing the
loss function between the given event and the generated event over ranges of input values of ID,
p and V. The algorithm serves as a type of fast simulation for a water Cherenkov detector with a
fewer number of assumptions than traditional reconstruction methods. We will show some of the
algorithm’s excellent performance in addition of the architecture and principle of the network.
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Figure 1: The traditional reconstruction method (left) + an addition to the new method

1. Introduction

Traditionally in high energy physics, we try to reconstruct the event for a given event image
recorded by a detector and obtain the properties of the event such as the particle ID/type, 3D
momentum, and event vertex (See Figure 1). Note that in this article we only describe single-particle
events detected by a Super-Kamiokande (SK)-like water Cherenkov detector. To reconstruct the
properties of the particle detected, the current state-of-the-art non-neural-network based algorithm
for the SK event reconstruction is called FiTQun [1]. It uses the maximum likelihood estimation
algorithm. While both FiTQun and the new method use a likelihood function, the likelihood
functions are different from each other. The likelihood function for the new method is created
by training the generative neural network dipicted in Figure 2, while that for FiTQun is modeled
by consideration of physivs (refelection and scattering of Cherenkov photons etc.) based on full-
simulation. See more details of the generative network in [2].

Figure 2: The architecture of generative neural network
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2. Likelihood function for the new method and trainning of the nextwork

In the new method, we use -log likelihood function as the loss function to train the generative
neurel network by minimizing it. The loss function is defined as

𝐿𝑜𝑠𝑠 =
∑︁
𝑖

− ln 𝑃𝑢𝑛ℎ𝑖𝑡 (𝑦𝑖) +
∑︁
𝑖ℎ𝑖𝑡

− ln 𝑃𝑞𝑡 (𝑞𝑖ℎ𝑖𝑡 , 𝑡𝑖ℎ𝑖𝑡 ),

where 𝑃𝑢𝑛ℎ𝑖𝑡 (𝑦𝑖) is the unhit probability where i runs over all photomultiplier tubes (PMTs) and
𝑦𝑖 is 0(1) for (un)hit PMT. 𝑃𝑞𝑡 (𝑞𝑖ℎ𝑖𝑡 , 𝑡𝑖ℎ𝑖𝑡 ) is the probability density function of charge q and time t
registering charge 𝑞𝑖ℎ𝑖𝑡 at time 𝑡𝑖ℎ𝑖𝑡 . This function is modeled by multiple-Gaissian functions with
or without correlation between charge q and time t. During the training of the generative neural
network, the parameters for the Gaussian functions are optimized. In Figure 3(a), the hit probability
𝑃ℎ𝑖𝑡 = 1 − 𝑃𝑢𝑛ℎ𝑖𝑡 is plotted for electrons (left) and muons (right) where the top figure is simulated
distribution and the bottom figure is predicted by the generative network. In Figure 3(b), the charge
probability density function for a PMT at the center of the Cherenkov ring is plotted for electrons
(left) and muons (right) where the results with 1-, 3-, 5- and 10-Gaussian approximation are shown.

Figure 3: (a) Four left figures: Hit probability simulated (top) and predicted (bottom) for electrons (left) and
muons (right); (b) Two right figures: Charge probability density for electrons (left) and muons (right)

We train the network using 75% of simulated events with the remaining 25% used for validation.
During the training, the loss function show steady decrease and become more stable with increase
in the number of training epochs.

3. Performance of the New Method

For reconstruction of events, all the inputs are fixed at the true values but the one we are
interested in. Among some distributions to assess how the new method performs, we show two
distributions: the energy residual defined as Δ𝐸 = (𝐸𝑟𝑒𝑐 − 𝐸𝑡𝑟𝑢𝑒)/𝐸𝑡𝑟𝑢𝑒, and the particle ID
capability to distingush between electrons and muons. 𝐸𝑟𝑒𝑐 is the reconstrcuted energy and 𝐸𝑡𝑟𝑢𝑒

is the true energy. The particle ID capability is assessed by the difference in the loss function
between electron and muon hypothesis definded as Δ𝐿𝑜𝑠𝑠 = ln 𝐿𝜇 − ln 𝐿𝑒 where 𝐿𝜇 and 𝐿𝑒 are
the likelihood functions for muon and electron hypothesis, respectively. Δ𝐿𝑜𝑠𝑠 is basically the log
liklihood- ratio between the two hypotheses. If Δ𝐿𝑜𝑠𝑠 > 0, the event is muon-like. Otherwise
the event is electron-like. Figure 4(a) shows the distributions of energy residuals for muons (left)
and for electrons (right) with 1-,3-,5- and 10-Gaussian fit to the charge distribution of each PMT
where only charge is used without timing information. Figure 4(b) shows the Δ𝐿𝑜𝑠𝑠 distributions
with 1-Gaussian (left) and 10-Gaussian (right) fit to the charge distributions. The histograms in
orange are from muon events, while those in blue are from electron events. The spikes at zero are
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Figure 4: (a) Two left figures: Energy residual distribution for muons (left) and for electrons (right); (b) Two
right figures: Δ𝐿𝑜𝑠𝑠 with 1-Gaussian fit (left) and with 10-Gaussian fit (right)

due to escaping events from the detector in which there is not enough information to distinguish
electrons from muons. In fact if we apply a cut on the distance to the detector wall, the spikes are
significantlly reduced.

4. Conclusions and Future Prospect

We have shown the promising first results from a new way of reconstructing events detected
by a Super-Kamiokande type water Cherenkov detector based on a generative neural network. See
our published article [2] for further details. The next step is to try full reconstruction without fixing
values for some inputs to the network. This is in progress. We are also looking into a possibility of
distinguishing gammas from electrons. It is obviously important to try to reconstruct multi-particle
events. There are other neural network algorithms such as a variety of Generative Adversarial
Networks (GANs) that may improve the performance in reconstruction.
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