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The canonical seesaw models are one of the simplest and most natural scenarios that can account
simultaneously for neutrino masses and matter-antimatter asymmetry in our universe. Below
the seesaw scale, one can integrate out the heavy degrees of freedom to construct the seesaw
effective field theory (SEFT). In this talk, we investigate the connection between the full seesaw
model and the low-energy SEFT from a brand-new perspective: the invariant theory. Using the
powerful tool of Hilbert series, we demonstrate the intimate relation between the flavor space of
the SEFT and that of its ultraviolet theory. Through the matching of flavor invariants, it is revealed
that the precise measurements of dimension-five and dimension-six operators in the SEFT at low
energies are powerful enough to probe the full seesaw model, including CP violation necessary
for successful leptogenesis.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:yubr@ihep.ac.cn
mailto:zhoush@ihep.ac.cn
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
9
8
2

Connecting SEFT to Full Theory via Flavor Invariants Bingrong Yu

1. Motivation
The type-I seesaw model [1], which extends the Standard Model (SM) by adding right-handed

(RH) neutrinos 𝑁R, can naturally explain the tiny neutrino masses and generate the cosmological
matter-antimatter asymmetry through leptogenesis [2]. In the type-I seesaw model, the RH neutrinos
are usually much heavier than the electroweak scale and thus difficult to be directly observed in
the collider experiments. In this case, it will be practically useful to integrate out the heavy
degrees of freedom to obtain the low-energy effective theory of the seesaw model, the so-called
seesaw effective field theory (SEFT), which governs all the low-energy phenomena of the full
seesaw model. Then one may immediately ask: How does the ultraviolet (UV) theory affect the
observables at low energies? And conversely, how much can we know about the full seesaw model
from the low-energy experiments?

From the viewpoint of effective field theory, the impact of the UV theory on low-energy ob-
servables is completely encoded in the Wilson coefficients of high-dimensional effective operators.
The connection between the full seesaw model and the SEFT can be established by the parameter
matching at the seesaw scale Λ. The matching of the type-I seesaw model onto the SEFT up to
O(1/Λ2) at the tree level induces the dimension-five Weinberg operator O𝛼𝛽

5 = ℓ
𝛼L𝐻𝐻TℓC

𝛽L [3]

and one dimension-six operator O𝛼𝛽

6 =

(
ℓ
𝛼L𝐻

)
i/𝜕

(
𝐻†ℓ

𝛽L

)
[4]. Although there have been many

efforts in studying the relations between the observables in the low-energy SEFT and those in the
full seesaw model [4, 5], we will tackle this problem from a completely new point of view: the
invariant theory [6]. See Ref. [7] for early applications of (flavor) invariants to describing CP
violation in and beyond the SM, and Refs. [8, 9] for systematic studies of flavor structure in the
quark and leptonic sector in the framework of the invariant theory.

2. Formalism
The relevant part of the Lagrangian in the type-I seesaw is given by

Lseesaw = 𝑁Ri/𝜕𝑁R −
[
ℓL𝑌𝜈𝐻𝑁R + 1

2
𝑁C

R𝑀R𝑁R + h.c.
]
, (1)

where ℓL and 𝐻 ≡ i𝜎2𝐻
∗ are the left-handed lepton doublet and the Higgs doublet, respectively.

In addition, 𝑌𝜈 denotes the Dirac neutrino Yukawa coupling matrix and 𝑀R is the Majorana mass
matrix of RH neutrinos. If the seesaw scale Λ = O(𝑀R) is much higher than the electroweak scale,
then the low-energy phenomena are determined by the SEFT Lagrangian

LSEFT = LSM −
[
𝐶5
2Λ

O5 + h.c.
]
+
𝐶6
Λ2 O6 , (2)

up to O
(
1/Λ2) . At the tree-level matching, the Wilson coefficients are given by

𝐶5 = −𝑌𝜈𝑌−1
R 𝑌T

𝜈 , 𝐶6 = 𝑌𝜈

(
𝑌
†
R𝑌R

)−1
𝑌†
𝜈 , with 𝑌R ≡ 𝑀R/Λ . (3)

Now consider the most general transformation in the flavor space of the leptonic sector

ℓL → 𝑈Lℓ𝐿 , 𝑙R → 𝑉R𝑙R , 𝑁R → 𝑈R𝑁R , (4)

where 𝑙R denotes the RH charged-lepton fields. Here 𝑈L, 𝑉R ∈ U(𝑚) and 𝑈R ∈ U(𝑛) are three
arbitrary unitary matrices (for 𝑚 lepton doublets and 𝑛 RH neutrinos).
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models moduli phases physical parameters primary invariants
2-generation SEFT (𝑚 = 2) 8 2 10 10
2-generation seesaw (𝑚 = 𝑛 = 2) 8 2 10 10
3-generation SEFT (𝑚 = 3) 15 6 21 21
3-generation seesaw (𝑚 = 𝑛 = 3) 15 6 21 21

Table 1: Comparison of the number of independent physical parameters and primary invariants between the
SEFT and the full seesaw model. Note that the moduli denote the parameters in the model other than phases.

Eq. (1) is invariant under the above flavor transformation only if the Yukawa matrices transform as

𝑌𝑙 → 𝑈L𝑌𝑙𝑉
†
R , 𝑌𝜈 → 𝑈L𝑌𝜈𝑈

†
R , 𝑌R → 𝑈∗

R𝑌R𝑈
†
R , (5)

where 𝑌
𝑙
represents the Yukawa mass matrix of charged leptons. The transformation of the Wilson

coefficients in the SEFT is induced by Eq. (5) at the matching scale

𝐶5 → 𝑈L𝐶5𝑈
T
L , 𝐶6 → 𝑈L𝐶6𝑈

†
L . (6)

From Eqs. (5)-(6) we know that in the SEFT, the building blocks of the flavor invariants are
{𝑋

𝑙
≡ 𝑌

𝑙
𝑌
†
𝑙
, 𝐶5, 𝐶6} with the symmetry group U(𝑚), whereas {𝑌

𝑙
, 𝑌𝜈 , 𝑌R} serve as the building

blocks in the full seesaw model with the symmetry group U(𝑚) ⊗ U(𝑛).
Since the flavor invariants are closed under the addition and multiplication, they form a ring.

According to the invariant theory [6], all information about the algebraic structure of the invariant
ring is encoded in the generating function of the ring, that is, the Hilbert series (HS)

H(𝑞) =
∞∑︁
𝑘=0

𝑐𝑘𝑞
𝑘 , (7)

where 𝑐
𝑘

represent the number of linearly-independent invariants at degree 𝑘 , 𝑞 is an arbitrary
complex number to label the degrees of building blocks and satisfying |𝑞 | < 1. See, e.g., Refs. [8, 9]
for more details about the HS and its applications in flavor physics. A systematic method to compute
the HS is to use the Molien-Weyl (MW) formula [10]. As long as the symmetry group and the
representations of the building blocks are given, the MW formula could reduce the computation of
the HS to calculating contour integrals, which can be accomplished via the residue theorem [8, 9].

3. Results and Discussions
Now we apply the above general formalism of the invariant theory to our case. The symmetry

groups in the flavor space of the SEFT and the full seesaw model are U(𝑚) and U(𝑚) ⊗ U(𝑛),
respectively. The representations of the building blocks under the symmetry groups are given by
Eqs. (5)-(6). Using the MW formula, it is straightforward to compute the HS in the SEFT and the
full theory [11]. From the HS one can explicitly construct all the basic and primary invariants and
draw a number of very interesting conclusions (see Ref. [11] for more details):

• There are exactly equal number of independent physical parameters and primary invariants
in the SEFT and in its UV theory (cf. Table 1). This implies the inclusion of O5 and O6 in the
effective theory is already adequate to contain all physical information about the full theory.
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• There are also equal number of generators (basic invariants) in the ring of the SEFT and
that of the full seesaw model. There exists a one-to-one correspondence between two sets of
CP-odd basic invariants. Therefore, CP conservation in the low-energy SEFT is equivalent
to the absence of CP violation in the full theory.

• Through a proper matching procedure of flavor invariants in the SEFT and in the full theory,
one can directly relate CP violation for cosmological matter-antimatter asymmetry to that in
low-energy oscillation experiments in a basis- and parametrization-independent way.

Through the language of invariant theory, it is quite clear that how the precise measurements
at low energies can be used to probe the full seesaw model at high energies.
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