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Due to abundant dark matter and stellar-rich environments, the galactic center is the optimal
location to probe for signatures of captured dark matter annihilation. In this work, we have
studied the dark matter capture in the galactic center neutron star distribution and analyzed the
neutrinos coming from the annihilation of captured dark matter through long-lived mediators in
an idealized gigaton neutrino detector like IceCube/KM3NeT. We report projected limits on the
dark matter-nucleon scattering cross-section that are orders of magnitude below the current limits
in the TeV-PeV mass scales.
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1. Introduction

The existence of dark matter (DM) in our universe has been indicated by several cosmological
and astrophysical observations, though the exact microscopic nature of the DM remains an enigma.
Consideration of a particulate DM candidate which shares some non-gravitational interaction with
the standard model (SM) states opens up the possibility to detect the DM signal in ground-based
direct detection and collider experiments. However, the null results in such experiments have
pushed us to explore the DM in various exotic locations of our universe. One such possibility is to
look for DM signatures that are trapped within a celestial body owing to its interactions with the
SM constituents. The neutron stars (NS) are the ideal targets to probe the DM scattering with the
SM particles due to the high density. In this work, we have studied the capture of DM particles
by a population of neutron stars around the galactic center that hosts the densest distribution
of DM and stellar population in our galaxy [1]. These captured DM particles can dominantly
annihilate through long-lived mediators that can emerge from the stellar interior and decay within
the interstellar medium to produce gamma-ray or neutrino signatures [2–5]. These neutrinos may
be detected at terrestrial detectors like IceCube [6] or KM3NeT [7]. We demonstrate that within
this framework, the sensitivities of these experiments are orders of magnitude stronger than the
existing limits on the DM-nucleon scattering cross-section in the TeV-PeV mass range.

2. Dark Matter Capture

As a celestial body is roaming through the halo of DM, the DM particles get focused to
the celestial object due to its gravitational potential and the DM particles can scatter with the
SM constituents multiple times before losing sufficient energy to be trapped within the stellar
environment. At a distance r from the galactic center, the rate of capture of DM particles after S
times scattering within a NS is given by [8],

𝐶NS(𝑟) =
∑︁

S
𝐶S =

∑︁
S

𝜋 𝑅2 𝑝S(𝜏)
(
𝜌𝜒 (𝑟)
𝑚𝜒

) ∫ 𝑢esc

0

𝑓 (𝑢𝜒) 𝑑𝑢𝜒
𝑢𝜒

(
𝑢2
𝜒 + 𝑣2

esc

)
𝑔S(𝑢𝜒), (1)

where 𝑅 is the radius of the NS, 𝜌𝜒 (𝑟), 𝑚𝜒 and 𝑝𝑆 (𝜏) are the DM density, mass and probability
of S times scattering of the DM particles and 𝜏 is the optical depth. 𝑢𝜒, 𝑓 (𝑢𝜒) and 𝑔𝑆 (𝑢𝜒) are the
DM halo velocity, velocity distribution and the probability of capture respectively. The total rate of
DM capture due to NS distribution can be expressed as,

𝐶tot = 4 𝜋

∫ 𝑟2

𝑟1

𝑟2 𝑛NS(𝑟) 𝐶NS(𝑟) 𝑑𝑟, (2)

where 𝑛NS(𝑟) is the density of neutron stars at the galactic center adopted from [9]. We have
utilized the typical NS of mass 𝑀 = 1.5 𝑀⊙ and radius 𝑅 = 10 km. We have considered a region
𝑟 = 0.1 − 10 pc and utilised different DM density profiles tabulated in [1].

3. Neutrino Flux

The accumulated DM particles can annihilate or evaporate from the NS interior. However,
the evaporation is numerically insignificant for the considered DM mass range. Considering the
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equilibrium scenario, the muon neutrino flux reaching the Earth due to the dominant annihilation
of the DM particles into long-lived mediators is given by,

𝐸2
𝜈

𝑑𝜙𝜈𝜇

𝑑𝐸𝜈

=
Γann

4 𝜋 𝐷2 × Br(𝑌 → SM ¯SM) ×
(
1
3
𝐸2
𝜈

𝑑𝑁𝜈

𝑑𝐸𝜈

)
×
(
𝑒
− 𝑅

𝜂𝑐𝜏𝑌 − 𝑒
− 𝐷

𝜂𝑐𝜏𝑌

)
, (3)

where 𝐷 is the distance of the galactic center, Γann is the annihilation rate, Br(𝑌 → SM ¯SM)
is the branching ratio of mediator (𝑌 ) decay to SM states and the neutrino spectrum 𝑑𝑁𝜈/𝑑𝐸𝜈 is
adopted from [10]. 𝜂, 𝜏𝑌 are the boost parameter, lifetime of the mediator (𝑌 ) which are adjusted in
such a way so that the mediator can escape from the NS.

4. Results
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Figure 1: Sensitivities of SD DM-nucleon scattering
cross-sections for neutrino channel due to captured DM
annihilation in a galactic NS population for different
DM density profiles.

In order to study the reach of a gigaton neu-
trino detector in this scenario we consider the
muon track-like events generated from the in-
coming muon flux at the detector due its better
angular resolution than the cascade events. The
primary sources of background for this neutrino
search are the atmospheric and astrophysical
neutrino backgrounds. We have not considered
the atmospheric muon background as it can be
avoided by applying some veto to the detec-
tor. For KM3NeT, the detector remains ∼ 37%
of the time below the horizon for the galactic
center and for IceCube we need to use a small
inner region of the detector to reject the muon
backgrounds.

We have estimated the sensitivity by com-
paring the signal events with the background
events generated from considering both the atmospheric and astrophysical backgrounds in the en-
ergy bins [max(𝐸thres, 𝑚𝜒/5), 𝑚𝜒] which is greater than the energy resolution of the considered
detectors [11]. In Fig. 1, the projected limits on the spin-dependent (SD) DM-nucleon scattering
cross-section is shown for the mediator decay to neutrinos for different DM density profiles. The
projected exclusion plots for spin-independent scattering with all the other decay channels of the
mediator are cataloged in [1]. In Fig. 1, the direct detection limits are obtained from PICO-60
results [12] and the other limits are described in [3, 4].

5. Conclusion

If the DM particles share some non-gravitational interaction with the SM particles, then the
scattering with the SM constituents of the NS can lead to their capture inside the star. We have
considered the DM capture in the distribution of NS at the galactic center and the subsequent
annihilation of the accumulated DM particles through long-lived mediators that can emerge from
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the NS environment and decay to SM states within the interstellar medium. The produced neutrinos
can be probed in gigaton detectors on the Earth. Within the aforementioned paradigm, the projected
sensitivity of the neutrino detectors extends orders of magnitude further into the DM-nucleon
scattering cross-section than the existing limits for TeV-PeV mass scales.
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