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Predicting extreme precipitation events is one of the main challenges of climate science in this
decade. Despite the computational power available nowadays, current state-of-the-art Global
Climate Models’ (GCMs) spatial resolution is still too coarse to correctly represent and predict
small-scale phenomena such as convection, therefore precipitation prediction is still imprecise. For
this reason, downscaling techniques play a crucial role, both for the understanding of the physical
mechanisms behind precipitation onset and development, and for applications like hydrologic
studies, risk prediction and emergency management.
Taking advantage of Deep Learning techniques, we exploit a conditional Generative Adversarial
Network (cGAN) to train a generative model able to perform precipitation downscaling. This
model, a deep Convolutional Neural Network (CNN), takes as input the precipitation field at the
scale resolved by GCMs, adds random noise, and outputs a possible realization of the precipitation
field at higher resolution, preserving the statistical properties of the input field. Also, being
conditioned by the coarse-scale precipitation, the spatial structure of the produced small-scale
field is consistent with the one prescribed by the input GCM prediction. To assess the skill of
our model, we try to reconstruct the daily total precipitation field over the Taiwan region, starting
from a coarsened version of the ERA5 reanalysis dataset. Results show the good ability of the
model in capturing the features of the fine-scale precipitation field. In addition, compared to other
downscaling techniques, our model has the advantage of being computationally inexpensive at run
time and easily generalizable to any geographical domain.
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1. Introduction

Extreme precipitation events frequency has increased since the second half of the 20th century
in many regions of the world [1]. The trend is expected to not diminish, as the Earth continues
to warm due to climate change [2–6]. The social and economic impact of this is considerable:
remarkable examples are floodings and landslides, which are the most destructive and therefore the
most evident consequences of these events. Also the management of the increased precipitation
amount is a challenging task, particularly in densely populated and highly urbanized areas. Indeed
the development of human settlements is associated with a modification of the territory, where the
natural soil surface is covered by buildings and impervious materials. In such an environment,
storm runoff carries a large amount of pollutants, which ends up in streams and lakes, leading to
a general degradation of water quality and aquatic ecosystem health [7]. Therefore predicting the
frequency of extreme precipitation events is among the major challenges of climate sciences these
days. Also the estimation of their occurrence in future scenarios play a central role.

Global Climate Models (GCMs), the main modeling tool of the climatological community,
allow the integration of the state of the Earth’s atmosphere for the long period of time (from years
up to decades) needed for the analysis of the past and present climate, and for future projections
and scenarios. To implement the equations governing the evolution of the flow of the Earth’s
atmosphere, they use a grid covering the entire globe, with a typical horizontal spatial resolution
ranging from 50 to 200 km. The available computing power is one of the main factors conditioning
this spatial resolution. Despite the continuous development in hardware technologies and code
optimization, the trade-off between a higher spatial resolution on one hand, and the availability of
hardware resources and the amount of time in which they are employed on the other hand, must
allow to obtain analysis and projections at a reasonable cost. This implies that the spatial resolution
of current state-of-the-art GCMs is too coarse to properly represent phenomena related to the onset
and development of the precipitation, such as convection. In particular GCMs are not able to resolve
circulation patterns related to extreme events [8]. In addition, since the precipitation field varies on
spatial and temporal scales smaller than those explicitly resolved, their predictions are not adequate
for impact studies and for the needs of applied disciplines such as hydrology.

Downscaling refers to any method to infer high-resolution variables from the corresponding
low-resolution fields (see e.g. [9, 10]). Many downscaling techniques exist, and they can be grouped
into two main families:

1. Dynamical Downscaling uses Regional Climate Models (RCMs), full atmospheric models
with resolution higher than GCMs, which are nested (embedded) in them, but cover only a
limited area of interest, to keep the overall computational load manageable.

2. Statistical Downscaling looks for statistical relationships between coarse-scale predictors and
fine-scale predictands.

Among statistical downscaling methods, Stochastic Downscaling techniques deserve a special
mention. They implement stochastic disaggregation algorithms, which, starting from the smooth
distribution of the precipitation at the large scale, aim to generate a random small-scale precipita-
tion field, satisfying both the large-scale constraints (e.g. the average precipitation intensity) and
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Dynamical Downscaling Statistical Downscaling

PROs Physics-based approach Computationally efficient

CONs Computationally expensive Not physics-based
Requires many observations
Assumes stationarity

Table 1: Main pros and cons of Dynamical and Statistical downscaling techniques.

the consistency with the observed statistical properties of the small-scale precipitation [11]. Table
1 lists the main advantages and drawbacks of the two families of downscaling approaches. RCMs
improve GCMs predictions and have a strong theoretical foundation, being based on the integration
of the same set of prognostic equations. However many state-of-the-art codes are highly complex
modelling systems and thus show scalability issues. Since they add a lot of computational burden
to the already huge demands of GCMs, they should be preferred when this cost increase is man-
ageable. Statistical downscaling techniques are computationally very efficient, since they result in
relationships easy to implement and compute. Despite this, they often lack a physical foundation,
because the relationship between large-scale predictors and small-scale predictands is empirical.
Also, to tune this relationship many local-scale observations are required, and these are not always
easily available. Finally, the application of statistical downscaling relies on the stationarity of the
predictors-predictands relationship. This is not always verified, particularly when considering a
future scenario, for which climate change should be properly taken into account.

Seen in the context of image processing, a downscaling task sharesmany similarities with super-
resolution [12], the process of increasing the spatial resolution of an image beyond its original value.
In recent years this field of study took advantage from advancements in deep learning techniques.
Particularly, it benefited from the introduction of Convolutional Neural Networks (CNNs) and
generative models like Generative Adversarial Networks (GANs). In this paper we describe the
application of a deep convolutional conditional GAN to the downscaling of the precipitation field
produced by a GCM.

The rest of the paper is structured as follows. Section 2 gives an overview about GANs,
focusing on the principle behind their training. We also describe the experiment we performed,
the dataset we used to train the GAN, and we define the metrics used to evaluate the quality of the
generated precipitation field. In Section 3 we evaluate and show the performance of our GAN in
reconstructing the daily total precipitation field over the region surrounding the island of Taiwan.
Section 4 summarizes and concludes the paper.

2. Methods

2.1 GANs and conditional GANs

A GAN [13] consists of a pair of neural networks trained simultaneously and adversarially:

• A generator, learning a map from a noise probability distribution to the distribution of the
data to be reconstructed.
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• A discriminator, learning the probability that a sample is real or comes from the generator.

Formally, to capture the distribution of the original data, the generator builds a map from a given
noise distribution 𝑝𝑧 (z) to a data space 𝑝𝑔. The mapping function modelled by the generator is
a differentiable function 𝐺 (z; 𝜃𝑔) depending on the parameters 𝜃𝑔. The discriminator represents
the function 𝐷 (x; 𝜃𝐷), which is the probability of x being from the actual data distribution rather
than from 𝑝𝑔. The discriminator is trained like a classifier, to maximize the probability of a correct
labelling (samples from the actual distribution labelled as “real” and samples from the generator
labelled as “fake”). The generator is trained to cheat the discriminator, maximizing the probability
that the discriminator assigns the wrong label (“real”) to a samples generated by it. Using the same
notation as above, the generator and the discriminator play a min-max game with the following
value function 𝑉 (𝐷,𝐺) (cf. [13]):

min
𝐺
max
𝐷

𝑉 (𝐷,𝐺) = E x∼𝑝𝑑𝑎𝑡𝑎 (x) [log𝐷 (x)] + E z∼𝑝𝑧 (z) [log (1 − 𝐷 (𝐺 (z)))] (1)

In the case of a successful training, the data produced by the generator seem realistic, however
there is no control over their modes. That is to say, the generated samples seem to come from the
distribution of the actual data but it is not possible to specify which subset these samples have to
belong to (e.g. if the generator is meant to reproduce the digits from 0 to 9, it is not possible to
induce it to reproduce a specific digit). However, it is possible to provide the GAN with additional
information in order to condition the generation process [15]. For example, the class labels of the
data to be generated can be provided, or data from other modes. Let y be this additional information;
the conditioning of the GAN is performed providing both the generator and the discriminator with y,
in combination with the corresponding sample (a noise sample for the generator and a real/generated
sample for the discriminator). Equation 1 becomes (cf. [15]):

min
𝐺
max
𝐷

𝑉 (𝐷,𝐺) = E x∼𝑝𝑑𝑎𝑡𝑎 (x) [log𝐷 (x|y)] + E z∼𝑝𝑧 (z) [log (1 − 𝐷 (𝐺 (z|y)))] (2)

The straightforward application of this idea to an image super-resolution task is to provide both the
generator and the discriminator with the coarse-resolution image, to properly direct the generation
of the corresponding fine-resolution image.

2.2 Case study and data

To demonstrate the ability of our GAN in performing the downscaling of the precipitation field,
we tried to reconstruct the daily total precipitation over the Taiwan region. We considered a squared
domain, centered on the city of Taipei (lat 25.10 N, lon 121.59 E), and extended between latitudes
17 N and 32.75 N, and longitudes 113.25 E and 129 E (Figure 1). In order to asses our model’s
abilities we carried out a perfect model experiment: considering high-resolution precipitation data,
we degraded (upscaled) them by performing a coarsening operation, and used both the original
and the corresponding low-resolution samples to train the GAN. At the end of the training we
evaluated the skill of the generator in reproducing realistic high-resolution precipitation fields at the
fine scale, using the original dataset as reference. As a data source we used the ERA5 reanalysis
dataset [16, 17], which spans the time period from 1950 to present, providing hourly estimates for
a large number of atmospheric, ocean and land-surface variables. This dataset covers the entire
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Figure 1: The domain under investigation (red box) is centered on the city of Taipei (lat 25.10 N, lon 121.59
E) and includes the Taiwan island and the surrounding ocean (Made with Natural Earth. Free vector and
raster map data @ naturalearthdata.com).

globe and has an horizontal resolution of 0.25°× 0.25°. We considered a subset of the entire ERA5
dataset, spanning the years from 1950 to 2020, corresponding to 25871 training examples (days).
The operational steps of our experiment were as follows:

1. We performed a coarsening operation on the training dataset, reducing its horizontal spatial
resolution to 1°×1°. This operation was performed by aggregating every group of 4 adjacent
grid cells, and taking the average of the daily total precipitation value for them.

2. The GAN was fed with both the original fine-scale and the coarsened samples. In particular,
the generator used only the coarse-scale precipitation fields, while the discriminator was
trained with couples of coarse-scale and the corresponding fine-scale examples, drawn from
both the original dataset and from the generated samples. The generator performed the
downscaling operation, producing precipitation fields with spatial resolution of 0.25°×0.25°.
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3. The training progress and the skill of the trained generator were assessed computing some
climatologically meaningful metrics, comparing the generated dataset with the reference one.

The GAN was trained for 200 epochs on an NVIDIA Volta V100 GPU, provided by the CINECA
consortium.1 For each epoch the training algorithmprocessed thewhole training dataset, performing
the optimization of a loss function defined by Equation 2 for all the 25871 training examples, and
updating the generator and the discriminator parameters accordingly.

2.3 Validation

Unlike other deep learning models, the loss function used to train a GAN (Eq. 2, Section 2.1) is
not related to the quality of the generated images in a straightforward way. Many different metrics
are designed to assess the quality of generated images. However, since our GAN ismeant to generate
the field of an atmospheric variable, we decided to evaluate the quality of samples produced by the
generator using climatologically meaningful metrics. As the first quality metrics, we computed the
climatology of the daily total precipitation field, over the whole set of generated samples. For each
domain grid point 𝑥 (𝑖, 𝑗) the climatology is defined as:

𝑥
(𝑖, 𝑗)
clim =

∑
𝑡
𝑥
(𝑖, 𝑗)
𝑡

𝑇
(3)

where 𝑥 (𝑖, 𝑗)𝑡 is the value of the daily total precipitation for that grid point, for the day 𝑡, and 𝑇 is the
total number of days in the dataset. In other words the climatology is simply the temporal average
of the daily accumulated precipitation for each domain grid point. Then we computed the standard
deviation of the daily total precipitation, which for each grid point is defined as:

𝑥
(𝑖, 𝑗)
SD =

√√√√∑
𝑡

(
𝑥
(𝑖, 𝑗)
𝑡 − 𝑥

(𝑖, 𝑗)
clim

)2
𝑇

(4)

with the same meaning of the symbols as above. The standard deviation expresses the dispersion
of each grid point’s daily total precipitation around the climatology. Lastly we computed the 95th
percentile of the daily total precipitation field, which is an important metrics to assess how well the
GAN is able to capture the magnitude and the location of extreme precipitation events.

This set of metrics allows to evaluate the quality of the fields produced by the GAN at the end of
the training. We also computed them throughout the training process, using the set of precipitation
fields generated at each epoch, to monitor the convergence of the networks.

3. Results

Figure 2 shows the climatology of the daily total precipitation field, for both the dataset
generated by our GAN at the end of the training (epoch 200) and for the reference (ERA5) dataset.
It is possible to notice that the trained GAN is able to reproduce the features of the mean daily total
precipitation field. In particular both the position and the value of the maxima of the climatology

1https://www.hpc.cineca.it/.
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Figure 2: Climatology of the daily total precipitation for the generated dataset (left) and for the reference
dataset (right).

Figure 3: Standard deviation of the daily total precipitation for the generated dataset (left) and for the
reference dataset (right).

field (over the island of Taiwan and above the ocean to the east of it; above the norther part of
the island of Luzon) are well reproduced. Note also that the GAN manages to capture the excess
of average daily total precipitation along the Okinawa Trough (which extends from the center
of the domain towards the northeastern part of it), and over the oceanic region surrounding the
northern part of the island of Luzon. However the climatology generated by the GAN tends to be
noisier than the reference climatology, which appears much smoother, in particular over oceanic
regions. Probably this noisy appearance is the residual of the striping effect related to the action of
convolution kernels, which is very evident for the first training epochs. Similar considerations apply
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to the standard deviation (Figure 3) and the 95th percentile (Figure 4) of the daily total precipitation.
For both these metrics the noisy aspect is more pronounced with respect to the climatology, however
the salient features and the spatial patterns of the reference dataset are reproduced by the GAN.

Figure 4: 95th percentile of the daily total precipitation for the generated dataset (left) and for the reference
dataset (right).

Figure 5: Root-mean-squared errors of climatology, standard deviation and 95th percentile of the generated
dataset with respect to the reference (ERA5) dataset, as the training of the GAN proceeds.

The plot in Figure 5 allows to monitor the training process of the GAN, giving a synthesis
of the values of the three metrics analyzed above at each training epoch. The root-mean-squared
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(a)

(b)

(c)

Figure 6: Average power spectrum of the daily total precipitation for the datasets generated at epoch 1 (a),
100 (b) and 200 (c) (red lines). Each plot also shows the reference (ERA5) average power spectrum (blue
lines).
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errors for climatology, standard deviation and 95th percentile of the daily total precipitation were
computed for each training epoch according to:

RMSE (a) =

√√√√√ ∑
(𝑖, 𝑗)

(
𝑥
(𝑖, 𝑗)
a, generated − 𝑥

(𝑖, 𝑗)
a, ERA5

)2
𝑁

(5)

where 𝑁 is the total number of grid points within the domain and 𝑎 = {climatology, standard
deviation, 95th percentile}. The trend of the three metrics suggests that the GAN converges around
epoch 150. The following fluctuations, particularly of the 95th percentile and of the standard
deviation could probably be related to the local variability in the generated precipitation field.
Indeed, in the absence of a physical constraint, such as the dynamics or a parameterization scheme
of a Regional Climate Model, the spatial structure of the small-scale precipitation field is difficult to
control. This is not necessarily to be considered a drawback of ourmodel, as long as the total amount
of precipitation over the domain is preserved and the large-scale structure of the precipitation is
respected. In fact, a downscaling procedure aims at generating fine-scale precipitation fields with
statistical properties similar to those of the precipitation observed over the corresponding area. Such
fields should not be regarded in a deterministic way, but as a possible realization of the small-scale
process, consistent with the structure of the large-scale precipitation [18].

Finally, Figure 6 shows the average power spectrum of the daily total precipitation, at the
beginning, middle and at the end of the training. The power spectrum gives a quantitative indication
of the spatial scales of variability of the precipitation field. We computed it, for both the generated
and the reference dataset, on each individual day and thenwe took the time average. This calculation,
carried out throughout the GAN training process, allowed to monitor the development of the GAN
downscaling skills from a point of view different from the one shown above. After the first training
epochs, the GAN is able to reproduce the reference spectrum for the lowest value of 𝑘 . This indicates
that the conditioning effect of the coarse-scale precipitation field has the desired effect, properly
driving the generation of a field with the correct large-scale spatial structure. For higher value of 𝑘
(𝑘 > 15) the generated spectrum diverges from the reference one, indicating the higher variability
of the generated precipitation at the small scale. It should be emphasized that the fact that our GAN
is able to reproduce the precipitation power spectrum with a good accuracy, without being based
on physical/meteorological assumptions, is a remarkable achievement.

4. Conclusion

In this paper we presented the application of a deep convolutional Generative Adversarial
Network to the task of precipitation downscaling. Such a model is an evolution of plain GANs,
constructed by providing both the generator and the discriminator with the coarse-resolution pre-
cipitation field, in order to direct the generation process. To demonstrate the ability of the model,
we tried to reconstruct the daily total precipitation over the island of Taiwan, in a perfect model
setup: starting from a reference dataset, we upscaled it, and we trained the GAN using both the
coarse- and the fine-scale datasets. Then we assessed the GAN’s downscaling skills by comparing
the fine-scale precipitation field from the generator with the reference dataset. The results show
the good agreement between the generated and the ERA5 dataset, although the former shows more
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variability at small scales, as pointed out both by analyzing the average power spectra of the daily
total precipitation, and by commenting the “oscillatory” artifacts in the maps of Section 3. The
improvement of model’s performance, with focus on the resolution of this shortcoming will be the
subject of future work. The downscaling method we developed offers the advantages of a deep
learning-based model, being inexpensive at run time (the computational load is mostly concentrated
in the training phase) and easily generalizable to any geographic domain, for which only a re-training
with an appropriate dataset is required.
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