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Computing operations at the Large Hadron Collider (LHC) at CERN rely on the Worldwide
LHC Computing Grid (WLCG) infrastructure, designed to efficiently allow storage, access, and
processing of data at the pre-exascale level. A close and detailed study of the exploited computing
systems for the LHC physics mission represents an increasingly crucial aspect in the roadmap of
High Energy Physics (HEP) towards the exascale regime.

In this context, the Compact Muon Solenoid (CMS) experiment has been collecting and storing
over the last few years a large set of heterogeneous non-collision data (e.g. meta-data about
replicas placement, transfer operations, and actual user access to physics datasets). All this data
richness is currently residing on a distributed Hadoop cluster and is organized so that running
fast and arbitrary queries using the Spark analytics framework is a viable approach for Big Data
mining efforts. Using a data-driven approach oriented to the analysis of this meta-data deriving
from several CMS computing services, such as DBS (Data Bookkeeping Service) and MCM
(Monte Carlo Management system), we started to focus on data storage and data access over
the WLCG infrastructure, and we drafted an embryonal software toolkit to investigate recurrent
patterns and provide indicators about physics datasets popularity. As a long-term goal, this aims
at contributing to the overall design of a predictive/adaptive system that would eventually reduce
costs and complexity of the CMS computing operations, while taking into account the stringent
requests by the physics analysis community.
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1. Introduction

The current generation of High Energy Physics (HEP) experiments is approaching the exascale
regime, opening several new challenges in the software and computing domain. At the Large Hadron
Collider (LHC) at CERN, computing operations rely on the Worldwide LHC Computing Grid
(WLCQG) infrastructure, designed to provide all the services needed to guarantee the full discovery
potential of each experiment [1]. This infrastructure is based on a complex and heterogeneous grid,
connecting the computing centers available to the LHC experiments and providing grid-distributed
services. The grid is hierarchically organized in a tiered structure including the Tier-0 data center
at CERN and the Tier-1/Tier-2 sites distributed in almost 40 countries all over the world. On top
of this worldwide infrastructure, the LHC experiments have developed a further set of services
available for many computing operations, from data management and transfer (Phedex [2], Rucio
[3]) to distributed physics analysis (CRAB [4]). Moreover, such a complex system requires a careful
monitoring to be maintained in a healthy state as well as a detailed analysis to achieve the required
future improvements.

In this context, Big Data derived approaches have started to be adopted to monitor computing
operations [5, 6] and study resources utilisation [7]. The CERN IT department provides a set
of Hadoop clusters featuring more than 30 PB of raw storage and making available a complete
data analytics framework [8]. Since 2015, the Compact Muon Solenoid (CMS) experiment started
collecting a large set of information (e.g. datasets access, replicas location and transfer, jobs
monitoring) from many different computing services, aggregating and storing this meta-data by the
Hadoop Data Files System (HDFS) on the so-called analytix cluster at CERN IT [9]. This new
solution adopted by CMS opened the possibility to explore this data by using the Spark analytics
platform, in order to investigate recurrent patterns and possibly provide useful indicators to enhance
the overall efficiency of the distributed computing operations.

In this work, we use CMS meta-data about 2019-2020, aggregated combining information
from several sources:

» Data Bookkeeping Service (DBS): physics data catalogue containing basic datasets informa-
tion (e.g. total size, number of files);

 Physics Experiment Data Export (Phedex): data management system to handle data transfer
over the grid (used up to the end of 2020, before the migration to Rucio [10]);

* Monte Carlo Management (MCM) & Production Monitor Platform (PMP): systems to manage
and monitor Monte Carlo samples production [11].

In section 2, we use a data-driven approach for analysing the aforementioned meta-data and exploring
CMS data storage at WLCG Tier-1/Tier-2 sites in order to address some important questions related
to data replicas location stored on disk. In section 3, we propose a simple supervised model able
to identify popular datasets (namely physics datasets more likely to be accessed) among all CMS
datasets at a given time. The model can also provide concrete hints about the most important
features driving this popularity classification.

This preliminary work paves the way towards a much larger project about data management
and computing operations at CMS. The long-term aim of this project is to develop an adaptive and
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predictive model which can be used to evaluate the impact of possible technical upgrades in the
future, or to study different scenarios and their implications, or to highlight the best choices in the
software and computing domain in terms of costs and complexity.

1.1 Previous works

Most of CMS grid-distributed services are monitored through custom tools and web applica-
tions (e.g. CMS Monitoring Dashboard [12]), and logging information is scattered over several
sources and typically accessible only by experts. The collected metrics are used to optimise data
distribution, ensuring that the most used data are replicated and accessible on the constrained disk
resources while cleaning up of unused or less used data. However, this can happen only post-factum
and it requires a sufficient amount of historical data to be accumulated to trigger the replication
process.

A first attempt to develop a model able to investigate the possibility to predict CMS datasets
popularity dates back to 2016 [13]. In that work, a brand new tool was developed to aggregate
and pre-process structured meta-data collected from several CMS data-services (e.g. DBS, Phedex,
SiteDB, PopDB) and then train a Machine Learning (ML) model to make short-term popularity
predictions. Additional information from CINCO (Cms INformation on COnferences [14]) was
also used as a complement to datasets meta-data, in order to study the influence of up-coming
conferences on the datasets popularity. That work demonstrated the possibility to make successful
predictions at least on some subset of the datasets. However, the developed tool is nowadays
deprecated: firstly because many changes have occurred both in CMS data-services themselves and
in their monitoring systems, secondly because the computing model complexity has raised and new
Big Data analytics solutions are needed to scale up with the exponentially increasing amount of
meta-data.

In the last years, CMS computing fostered the adoption of common Big Data solutions based
on open-source and scalable tools, such as Hadoop and Spark, available through the CERN IT
infrastructure. In 2017, exploiting such Hadoop+Spark ecosystem, new ideas about complex mon-
itoring workflows, predictive analytics, and performance studies were presented [15, 16]. In these
works, the Hadoop platform is demonstrated to be a valid solution for the implementation of a CMS
popularity data-service, fully replacing the previous version based on standard relational databases.
Thanks to the ML library offered by the Spark analytics framework, it is also possible to efficiently
make data popularity predictions, exploiting the scalability on large meta-data aggregations. These
popularity predictions can play a significant role in smart data placement policies at the WLCG
sites, both for newly created datasets and for holding data samples frequently accessed by CMS
physicists. In conclusion, they state that the Hadoop+Spark platform is becoming a potentially
crucial component in the ecosystem that enables the CMS experiment to attack Big Data analytics
problems in the long run.

2. Exploratory data analytics

This section covers the initial data exploration performed on the available meta-data with the
main objective of providing a point of reference for validation purposes. Physics data and its
structure at the CMS experiment is described in section 2.1 to introduce the complex scenario we
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are exploring. In section 2.2, we show an overview of the total amount of physics data registered on
DBS, giving a general picture about CMS physics datasets. In section 2.3, we go through a more
detailed analysis about data disk storage at different levels (e.g. single country or WLCG site),
exploiting the monitoring data about replicas location in 2019-2020 from Phedex. Our aim is to
address questions concerning the possibility to provide indicators about the effectiveness of various
grid operations choices, for instance making data frequently accessed by a specific physics group
(e.g. Top quark), quickly available on disk resources located in the corresponding geographical area
(e.g. East Europe).

2.1 Physics data at CMS

The CMS experiment has recorded huge volumes of physics data from collisions at the LHC,
and produced an even larger amount of simulated samples. Until 2020, when Phedex was the data
management system used in production, the CMS data model was organized into a hierarchical
structure of files, blocks, and datasets [17]. Data coming from the detector or produced by
simulations was stored into files (size of few GBs), suitable for users physics analysis purposes.
Files were grouped into blocks, considered as atomic units for data transferring among the sites.
These blocks are replicated in multiple copies and distributed among the computing centers of the
WLCG for further processing or analysis. Data blocks themselves are then logically organized into
datasets which represent a processing chain of specific physics processes.

Starting from raw data produced by the detector online system or by the simulation software,
successive degrees of processing (event reconstruction) refine this data, apply calibrations and create
higher-level physics objects. CMS uses a number of data formats (e.g. RAW, RECO, GEN, SIM,
DIGI) with varying degrees of details and refinement. Event information from each step in the
reconstruction chain is logically grouped into the so-called data tiers (e.g. RAW, RECO, AODSIM
but also RAW-RECO, GEN-SIM-DIGI) [18]. A data tier may contain multiple data formats,
for instance a given GEN-SIM-DIGI dataset includes the physics process generation (GEN), the
detector simulation (SIM), and electronics digitization step (DIGI). The most important data tiers
for the physics analysts community are AOD* (AOD or AODSIM), containing real or simulated
data actually used in the analysis, and their derivatives MINIAOD* (MINIAOD or MINIAODSIM)
and NANOAOD* (NANOAOD or NANOAODSIM), produced to grant only the essential physics
information to reduce the size.

2.2 CMS datasets overview

As mentioned in section 1, DBS can be seen as a huge catalogue of all the existing datasets at
CMS. It records general datasets information as their total size, number of files, number of events,
data tier, etc.

Figure 1 shows an overview of the total amount of CMS data (almost 0.5 EB including both
real and simulated samples) registered on DBS up to the end of 2020. For detector collisions data
(~ 215 PB), the most relevant data tiers are: RAW, particles collisions raw data collected directly by
the detector electronics; RECO, particle collision data produced by prompt reconstruction at Tier-
0 or Tier-1 sites; AOD (Analysis Object Data), processed collisions data containing higher-level
information about the reconstructed physics objects.
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Figure 1: Overview of the CMS physics data collected/produced up to 2020. On the left, real detector data
are shown (total size ~ 215 PB); on the right, Monte Carlo simulated data are shown (total size ~ 259 PB).

The prevalent data tiers for simulated data (~ 259 PB), instead, are: AODSIM, analysis objects
data deriving from simulations; GEN-SIM, data combining Monte Carlo generated physics events
with their energy deposits in the simulated detector; GEN-SIM-RECO, including also reconstructed
hits/tracks/clusters of physics objects.

2.3 CMS Tier-1/2 disk storage

In 2019-2020, the CMS experiment included 7 Tier-1 and 55 Tier-2 active sites over the WLCG
infrastructure. The total amount of data stored on the available disk was beyond 100 PB over all the
period (~ 60% of real detector data, ~ 40% of MC simulated data) with peaks of about 125 PB.
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Figure 2: Weekly time trend of CMS Monte Carlo simulated data in 2019-2020. On the left, Tier-1 disk
storage is considered (7 WLCG sites); on the right, Tier-2 disk storage is considered (55 WLCG sites).

In Figure 2, the trend of Monte Carlo data stored on Tier-1 and Tier-2 disk is shown, grouping
by data tier. In Tier-1 sites, GEN-SIM-DIGI-RAW fraction linearly increases over time and it takes
up a large part of the total amount of data in the end of October 2020. The other more significant
data tiers are AODSIM and MINIAODSIM. While the former seems to decrease over time, the
latter increases both in Tier-1 and Tier-2 sites, demonstrating that lighter data formats are more and
more appropriate for most of the physics analysis.
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Figure 3: Weekly time trend of *AODSIM data at FNAL Tier-1 site (USA) in 2019-2020, grouped by PAG.
Datasets assigned to others PWGs are in grey, while datasets not found on the MC management system are
in black. On the right, the table maps each PAG code to the corresponding full name.

Finding new solutions for the targeted removal of large AOD* replicas in favour of the cor-
responding MINIAOD¥*, could be a central factor in reducing disk storage needs. The measured
average size per event for AODSIM datasets is (S) = 388 + 97 KB (nominal size is 400-480 KB),
while for MINIAODSIM we have (S) = 51 + 14 KB (nominal size is 35-60 KB), showing a reduc-
tion of almost one order of magnitude [19]. Further size reduction to 1-2 KB per event is achieved
by the NANOAOD format, started to be adopted very recently [20].

The developed analytics toolkit is also able to provide more precise storage insights at the level
of a single country or single WLCG site. As an example, Figure 3 shows the amount of *AODSIM
(AODSIM, MINIAODSIM, or NANOAODSIM) data stored at the Fermi National Accelerator
Laboratory (FNAL) facility in the USA, grouped by HEP analysis community. In CMS, Physics
Working Groups (PWGs) are sub-grouped into Physics Analysis Groups (PAGs), Physics Object
Groups (POGs), and Detector Performance Groups (DPGs) [21]. Using the MC data management
system, it is possible to retrieve the information about which PWG submitted the dataset production
request, mapping each *AODSIM sample to the corresponding group of interest. In this case, the
plot shows that more than half of the *AODSIM datasets stored on FNAL disk actually contains
data interesting in physics studies about Higgs boson, Top quark, or SUSY theory.

Such analysis could be useful to investigate new ideas for dynamic replicas placement over
the WLCG architecture, making the most popular kind of data efficiently available to local HEP
analysis groups. Unfortunately, at this stage, it is still difficult to make precise statements about the
effectiveness of this range of solutions because no clear patterns emerge from the available data.

3. Popularity analysis

In this section, we adopt a targeted approach to discover more specific correlations in the
meta-data previously explored, introducing the concept of data popularity. This approach could
allow to study CMS data placement policies based on the analysis of replicas storage across WLCG
sites and their access patterns. In particular, our purpose is to develop a supervised model able
to classify AODSIM datasets as popular or not_popular in a given AT (e.g. in month M) and to
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provide some indicators about the most important features driving the classification. The training
features extracted for each dataset and used in this binary classification are the following:

* ftot_size: total size;

* avg_file_size: average size per file;

* avg_event_size: average size per event;

* num_replicas: number of replicas on T1/T2 disk (in month M);

* fract_replicas: fraction of replicas on T1/T2 disk (in month M);

* pag: Physics Analysis Group that submitted the Monte Carlo production request (e.g. HIG);
* campaign: Monte Carlo production campaign (e.g. Runll-Summerl16);

* generator: Monte Carlo event generator (e.g. sherpa).

The target label of the classifier is the popularity class Py, defined as:
popular if N2<Cess > T
Py = "M (1)
not_popular  if N3 < T

where N37°* is the total number of dataset accesses in month M and T is the threshold used to
discriminate popular datasets. For the following analysis, we set this threshold T to a specific
fixed value, computed by running a simple 1D clustering algorithm (K-means clustering or Natural
Breaks Optimisation) on the distribution of the average number of datasets monthly accesses in the
whole period 2019-2020.

3.1 Random-forest classification

For the dataset popularity classification, a random-forest binary classifier is trained and tested
for each month from January 2019 to October 2020. As shown in Figure 4, the classification
accuracy is always greater than 85%, which is quite promising at this preliminary stage.

However, to have an unbiased measure of the ability of the model to classify a dataset as
popular only if it is actually popular, we need to consider other metrics as well. In particular, we
are dealing with an imbalanced binary classification problem (~ 15% of popular and ~ 85% of
not_popular datasets in each month) and this can lead to the tendency of the classifier to assign
datasets to the majority class. For this reason, we also computed precision and recall metrics for
the minority class of popular datasets:

TP TP
Precision = ——— ~ 0.63 Recall = ————— ~ (.82 2)
TP+ FP TP+ FN

where T P = True Positives, F'P = False Positives, N = False Negatives.

The result could be further improved adding other carefully engineered features for the classifier
(e.g. replicas time creation/deletion, number of replicas transfers requests) but this requires more
detailed monitoring information about data placement, transfer, and access not yet available.
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Figure 4: Accuracy of the random-forest classifier on the training and testing set in each month.

3.2 Feature importance

Finally, in Figure 5, we show the feature importance results comparing the two years 2019 and
2020: at the current status of our work, num_replicas (number of replicas on disk) and fot_size
(total size of the dataset) are the most important features to drive the classification. Although this
preliminary result may seem trivial and does not provide very insightful indicators in the scope of
replicas placement, it is nevertheless useful in the validation process of what has been done so far
and in the evaluation of what the next steps may be.
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Figure 5: Features importance of the trained random-forest classifier for 2019 and 2020.

A possibility that needs further investigation in this context, is to exploit this kind of popularity
analysis to understand if there is a trace of the so-called seasonality effect, namely a raising of the
popularity of some datasets based on the approaching of HEP conferences during the year. This
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idea can be explored having more detailed data available and trying different adjustments in the
classification timescale (e.g. shrinking the time window to a week).

4. Future developments

To improve the classification performance of the dataset popularity model and look for inter-
esting correlations among the training features, more monitoring data have to be collected from the
different CMS services, exploiting the full set of information aggregated on the CERN IT analytix
cluster. In particular, the analytics toolkit we drafted and tested in this work could be re-designed
in order to directly extract the meta-data from HDFS, running even complex queries through an
effective and handy interface implemented on top of Pyspark (Spark Python API). This would also
allow us to perform data pre-processing and custom analysis in a more streamlined manner and for
a wider set of use-cases.

The following step will be to complete the development of a meta-data analytics platform
for CMS computing operations, providing tools to further investigate the popularity problem (e.g.
searching for seasonality effects) exploiting the Big Data analytics framework. In this direction, the
purpose of our long-term project is to build a robust and effective model able to make predictions
about datasets popularity in the future, to simulate and evaluate different replicas placement and
data caching strategies, and to explore various possibilities to reduce costs and complexity of the
CMS computing model.

5. Conclusions

In this work, we developed a preliminary analytics toolkit to analyse CMS computing operations
meta-data, collected by the Apache Spark platform available on the dedicated Hadoop analytix
cluster at CERN IT department.

We started to test the current implementation against monitoring data aggregations from 2019
and 2020, exploring some ideas about how to exploit this meta-data to investigate data storage
on disk at WLCG Tier-1 and Tier-2 sites. We also designed, trained, and tested a random-forest
classifier to identify popular physics datasets in each considered month. The overall classification
accuracy turns out to be around 90% and the most important features driving the popularity class
assignment for dataset X in month M are the total size of X and its number of replicas stored on
disk in M. A larger set of more detailed monitoring data and further optimisation in the classifier
design are needed to provide robust and more effective indicators that could be eventually used to
improve replicas placement strategies.

Exploiting Big Data Analytics solutions adopted by the CMS experiment in the recent years
by using a data-driven approach, this work laid the foundation to investigate many problems in the
computing model scenario of the experiment: in this direction, the long-term aim of our project is
to develop an adaptive and predictive model which can be used to simulate CMS data management
and CMS computing operations in order to design, test, and evaluate future improvements in the
software services domain.
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