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In the synchrotron radiation tomography experiment, sparse-view sampling is capable of reducing 

severe radiation damages of samples from X-ray, accelerating sampling rate and decreasing total 

volume of experimental dataset. Consequently, the sparse-view CT reconstruction has been a hot 

topic nowadays. Generally, there are two types of traditional algorithms for CT reconstruction, i.e., 

the analytic and iterative algorithms. However, the widely used analytic CT reconstruction 

algorithms usually lead to severe stripe artifacts in the sparse-view reconstructed images, due to 

the Nyquist rule is not satisfied. While the more accurate iterative algorithms often result in 

prohibitively high computational costs and difficulty in selecting production parameters. In this 

paper, we propose a new hybrid domain method based on fusion learning which contain the image 

domain and projection domain. In the image domain, we propose a UNet-like network 

TransCovUNet which contains the Transformer module to consider the global correlation of the 

extracted features. In the projection domain, we employ a modified Laplacian Pyramid network 

to recover unmeasured data in the sinogram, which progressively reconstructs the sub-band 

residuals and can reduce the quantity of network parameters. Subsequently, we employ a deep 

fusion network to fuse the two reconstruction results at a feature-level, which can merge the useful 

information of the two reconstructed images. We also compared the performances of those single-

domain methods and the hybrid domain method. Experimental results indicate that the proposed 

method is practical and effective for reducing the artifacts and preserving the quality of the 

reconstructed image. 
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1.  Introduction 

The High Energy Photon Source (HEPS) is a new light source in China with high energy 

and high brightness [1], which is located in Beijing, 80 km from the institute of high energy 

physics, CAS. This project was officially approved in Dec. 2017 with construction beginning in 

late 2018 and completion in middle of 2025. The storage ring with electron energy of 6 GeV and 

emittance lower than 0.06nm×rad, would provide the synchrotron beam which will brilliance 

higher than 1×1022 phs/s/mm2/mrad2/0.1%BW. So, the HEPS experiments can generate massive 

amounts of data in a short time after it starts running. As an example, the hard X-ray imaging 

beamline of HEPS(HEPS-B7), can collect 10k projections (each 10k × 10k) in 100s. The data rate 

will reach 30 GB/s, which will make it easily to generate petabytes of measurement data. So, 

advanced methods are urgently needed that can reduce the amount of data collected, or feedback 

timely and permit real time determination of whether specific data are useful. On the other hand, 

for some experiment, for example, the solution reactions require fast detection, biological 

materials need to maintain in vivo indicators and rapidly detect, and the radiation dose received 

of light sensitive materials needs to be reduced. Sparse-view computed tomography (CT) can 

reduce the radiation dose in experimental sample, speeding up the data acquisition and reduce the 

total volume of measurement dataset. So sparse-view CT is a promise method to overcome the 

above difficulties on the future HEPS-B7. However, insufficient projection views in sparse-view 

CT will bring severe stripe artifacts in the conventionally analytic filtered back projection (FBP) 

[2] reconstruction. On the other hand, the iterative approaches [3-6] show an excellent noise 

reduction performance, but those approaches are often computationally expensive because of 

repetitive projections and back-projections during the iterative update procedure.  

In recent years, artificial intelligence has developed rapidly and achieved great success in 

many fields, such as image classification [7], image segmentation [8], super-resolution [9], and 

image denoising [10], etc. In CT applications, deep learning are attracting more and more attention. 

Because of its excellent performance in solving inverse problems, it is increasingly applied to the 

ill-posed inverse problem of CT reconstruction. In [11], Würfl et al. mapped the FBP algorithm 

to an artificial neural network (ANN), which can reconstruct CT data with limited views and show 

consistent improvement over the FBP method with the same computational complexity. Jin et al. 

[12] proposed a CT image reconstruction strategy named “FBPConvNet”, which is based on 

modified UNet [13] and residual learning and using FBP reconstruction of sparse view CT 

projection as input. Experimental results show that this method has better imaging performance 

than the iterative reconstruction method based on total variation constraints. UNet can extract 

features through continuous downsampling with the encoder, and then use the decoder to 

gradually upsample the features output from the encoder through skip connections, so that the 

network can obtain features of different granularities. In view of the powerful decoding and 

encoding capabilities of UNet, many new models designed for CT image reconstruction or 

segmentation problems are based on the UNet structure, and have achieved good performance, 

such as UNet++[14], Res-UNet[15], Attention U- Net [16], ResAtt-UNet [17], etc. The models 

described above all rely on the convolutional neural network (CNN) structure. CNNs have 

dominated a series of medical imaging tasks. However, due to the inherent inductive bias, each 

convolution kernel can only focus on a sub-region in the whole image, which makes it lose the 

global context connection and cannot build long-range dependencies.  
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Recently, a novel artificial neural network structure Transformer [19] was proposed. This 

model is designed for sequence-to-sequence modeling in natural language processing (NLP) tasks. 

Transformer's Multi-headed Self-attention (MSA) can effectively establish global connections 

between sequences. Transformers have revolutionized most NLP tasks such as machine 

translation, named entity recognition, and question answering systems. The great success of 

Transformers in natural language has prompted researchers to explore their applicability in 

computer vision. But it faces great challenges when transferring its efficient performance in the 

natural language domain to the vision domain. Pixels in images have much higher resolution than 

words in text passages. Vision tasks such as image segmentation require pixel-level dense 

predictions. The computational complexity of Transformer self-attention is quadratic of the image 

size, which makes it difficult to handle high-resolution images. To reduce the computational 

complexity, a hierarchical neural network model Swin Transformer [20] is proposed based on the 

structure of windowed multi-head self-attention layer (W-MSA) and shifted window multi-head 

self-attention layer (SW-MSA). The model surpasses previous state of the art (SOTA) methods in 

dense prediction tasks such as image classification, object detection, and semantic segmentation. 

Subsequently, the U-shaped network Swin-UNet [21] with Swin Transformer as the basic unit of 

encoding and decoding was proposed for medical image segmentation, showing good 

performance and generalization ability. Although Transformer has made significant progress in 

the field of images, it still has some limitations. Transformer does not provide an up-sampling 

method similar to deconvolution and rely on other interpolation methods. Transformer couldn’t 

share the weight as CNN, and is at a disadvantage in computational overhead. Transformer uses 

a block patch method to deal with image problems, ignoring pixel-level internal structural features 

in blocks.  

One the other hand, some approaches attempt to solve the ill-posed inverse problem of CT 

image reconstruction from the projection domain [22,23]. Those approaches often use a pre-

defined upsampling operator, e.g., bicubic interpolation, to upsample the sparse view sinogram to 

the desired full view before applying the network for prediction. This preprocessing step increases 

unnecessary computational cost and often results in visible reconstruction artifacts. 

To overcome these problems, we propose a new hybrid domain method based on fusion 

learning. In the image domain, we propose a UNet-like network (TransCovUNet)  which contains 

the Transformer module to consider the global correlation of the extracted features. In the 

projection domain, we employ a Laplacian Pyramid network inspired by LapSRN [24] to recover 

unmeasured data in the sinogram, which progressively reconstructs the sub-band residuals and 

can reduce the quantity of network parameters. At last, we employ a deep fusion network 

DenseFuse [25] to fuse the two reconstruction results at a feature-level, which can merge the 

useful information of the two reconstructed images.  

The structure of this paper is as follows. We first introduce the proposed neural network 

structure and its basic unit modules. Then the experimental method used to study the performance 

of this network model is illustrated, and the performance of other existing advanced network 

models is compared, and finally a summary and discussion. 

2. Method 
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2.1 Overview  

The framework of the proposed method is shown in Fig. 1, which consists of three 

components in total: image domain part, projection domain part and the fusion part. In the image 

domain, the sparse view CT projection sinogram will first be reconstructed by the FBP algorithm 

to obtain a reconstructed image with stripe artifacts. The image with artifacts will then be 

processed by a pre-trained deep learning neural network to get pure artifact image. Finally, the 

pure artifact image will be subtracted from the reconstructed image with artifacts to obtain the 

final corrected high-definition reconstructed image. In the projection part, the sparse view CT 

projection sinogram will first be interpolated by a pre-trained deep learning neural network to get 

full view CT projection sinogram. The estimated full view CT projection sinogram will then be 

reconstructed by the FBP algorithm obtain the final corrected high-definition reconstructed image. 

At last, these two reconstructions will be fused by a pre-trained deep learning neural network. 

Neural networks require supervised training on the training dataset in advance. 

 

Figure 1: The overview of the hybrid domain sparse-view CT reconstruction method. 

2.2 The archtecture of TransCovUNet 

The network structure of proposed TransCovUNet is shown in Fig. 2. TransCovUNet 

consists of encoder, decoder and skip connections. TransCovUNet first divides the (W×H) input 

image into multiple non-overlapping patches. In our implementation, the patch size is set to 4×4. 

Each patch can be regarded as a 'token', so the feature dimension of each 'token' (patch) is 4×4=16, 

and the image segmentation layer will get (W/4×H/4) 'tokens' (patchs). A linear embedding layer 

then maps the features of each 'token' to the desired dimension (denoted as C). The transformed 

'tokens' (patchs) are then successively passed through a sequence of Swin Transformer modules 

and patch merging layers, resulting in a hierarchical feature representation. Among them, the Swin 

Transformer module is responsible for feature representation learning, and the block merging 

layer is responsible for downsampling. Inspired by the UNet network, we adopt a decoder 

structure that is symmetric with the encoder. The difference is that the basic unit of the decoder is 

composed of several convolutional layers module and a deconvolutional layer. The convolutional 

layers are responsible for feature representation learning, and the deconvolutional layer is 

responsible for the upsampling operation, which reshapes the feature map into a large feature map 

with twice the resolution. The contextual features extracted by the decoder are fused with the 



P
o
S
(
I
S
G
C
2
0
2
2
)
0
1
7

Sparse view CT reconstruction based on fusion learning in hybrid domain Tian Haolai, Ling li, Yu Hu 

5 

multi-scale features of the encoder through skip connections to compensate for the loss of spatial 

information caused by the downsampling process. Finally, two times of upsampling is performed 

through two convolution and deconvolution operations, and the resolution of the feature map is 

restored to the resolution of the input image (W×H). 

      We employed the Mean Squared Error (MSE) as the loss function. The MSE is used to 

measure the difference between the network output and the artifact label. The MSE loss function 

is generally defined as: 

𝑚𝑖𝑛
𝜃
𝐿 = ‖𝐼𝐴𝐹 − 𝐹𝜃(𝐼𝐿𝐷)‖2

2 (1) 

where the IAF is the the pure artifact image, ILD is the FBP reconstructed image from a sparse 

view sinogram, F is the nueral network,   present the parameters of network, ‖ ‖2 is the 2  

norm. 

 

Figure 2: The network architecture of the TransCovUNet. 

 

2.3 The archtecture of modified LapSRN 

The network structure of proposed modified LapSRN is shown in Fig. 3. The network is 

constructed based on the Laplacian pyramid framework. The model takes an sparse view CT 

projection sinogram as input (rather than an upscaled version of the sparse view CT projection 

sinogram) and progressively predicts residual images at log2S levels where S is the scale factor in 

the y direction. For example, the network consists of 3 sub-networks for expanding an sparse view 

CT projection sinogram at a scale factor of 8 in the y direction. This model has two branches: (1) 

feature extraction and (2) image reconstruction. 

On the feature extraction branch, at each level, the feature extraction branch consists of 

several convolutional layers and one transposed convolutional layer to upsample the extracted 

features by a scale of 2 in the y direction. The output of each transposed convolutional layer is 

connected to two different layers: (1) a convolutional layer for reconstructing a residual image at 

the same level, and (2) a convolutional layer for extracting features at the next level. The modified 

LapSRN perform the feature extraction at the coarse resolution and generate feature maps at the 
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finer resolution with only one transposed convolutional layer. In contrast to other projection 

approach that perform all feature extraction and reconstruction at the fine resolution, the modified 

LapSRN design significantly reduces the computational complexity.  

On the image reconstruction branch, at each level, the input image is upsampled by a scale 

of 2 in the y direction with a transposed convolutional (upsampling) layer. This layer is initialized 

with the bilinear kernel and allow to be jointly optimized with all the other layers. The upsampled 

image is then combined (using element-wise summation) with the predicted residual image from 

the feature extraction branch to produce a high-resolution output image. The output HR image at 

each level is then fed into the image reconstruction branch of next level. The entire network is a 

cascade of CNNs with a similar structure at each level.  

         The loss funtion is  defined as: 

𝑚𝑖𝑛
𝜃
𝐿 =∑𝜌(𝐼𝑠 − 𝐼𝑠)

𝐿

𝑠=1

(2) 

Where sI  is the ground truth of each layer, which is uniform downsampled from full view 

sinogram with corresponding scale. 
sÎ is predicted high-resolution sinogram. 2 2(x) x = + is 

the Charbonnier penalty function (a differentiable variant of 1  norm), the  is empirically set 

to 1e-3. L is the number of level in the pyramid. 

 

Figure 3: The network archtecture of the modified LapSRN. 

2.4 The archtecture of DenseFuse 

We employ the DenseFuse to fuse the reconstruction from the image domain and projection 

domain. As shown in Fig. 4, the DenseFuse consist of three parts: encoder, fusion layer, and 

decoder. The encoder are utilized to extract deep features which contains two parts: C1 and 

DenseBlock. The first layer C1 contains 3 × 3 filters to extract rough features. The dense block 

contains three convolutional layers which also contain 3 × 3 filters. Each layer’s output is 

cascaded as the input of the next layer. For each convolutional layer in encoding network, the 

input channel number of feature maps is 16. For the encoder, the filter size and stride of 

convolutional operation are 3×3 and 1, respectively, which make the input image can be any size. 
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The dense block architecture can preserve deep features as much as possible in encoding network 

which can make sure all the salient features are used in fusion strategy. 

The Fusion Layer adopt the 1 -Norm Strategy, which is based on 1 -Norm and soft-max 

operation. Here we denote the features maps by m

i , the activity level map 
iĈ will be calculated 

by 1 -norm and block-based average operator. The fused feature maps are denoted as mf . the 

initial activity level map iC  is calculated by: 

𝐶𝑖(𝑥, 𝑦) = ‖𝜙𝑖
1:𝑀(𝑥, 𝑦)‖

1
(3) 

Then the final activity level map is calculated by block-based average operator : 

𝐶̂𝑖(𝑥, 𝑦) =
∑ ∑ 𝐶𝑖(𝑥 + 𝑎, 𝑦 + 𝑏)𝑟

𝑏=−𝑟
𝑟
𝑎=−𝑟

(2𝑟 + 1)2
(4) 

where r determines the block size and is set to 1 in our strategy.  

Then the mf is calculated by: 

𝑓𝑚( 𝑥, 𝑦) =∑𝜔𝑖(𝑥, 𝑦) × 𝜙𝑖
𝑚(𝑥, 𝑦)

𝑘

𝑖=1

, (5) 

𝜔𝑖(𝑥, 𝑦) =
𝐶̂𝑖(𝑥, 𝑦)

∑ 𝐶̂𝑛(𝑥, 𝑦)
𝑘
𝑛=1

 

The final fused image will be reconstructed by decoder in which the fused feature maps mf  

as the input. 

The decoder contains four convolutional layers with 3×3 filters, respectively, which is used 

to reconstruct the final fused image. The output of fusion layer mf  will be the input of decoder. 

 
Figure 4: The network archtecture of the DenseFuse. 

3. Implementation   

3.1 Dataset 

        In this study, we use two datasets: simulated breast CT dataset and simulated foam 

CT dataset. 

        The simulated breast CT dataset were collected from DL-sparse-view CT 

challenge. The details of how the simulation images and data are generated are provided 

in Ref. [26]. The dataset contains 4000 cases where each case consists of the truth 
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image, and the corresponding 128-view FBP image. This dataset is used to verify the 

effectiveness of the proposed TransCovUNet model. 

        The foam CT dataset is simulated by tomophantom [27], in which the phantom is a 

combinations of  several geometrical objects. The dataset contains 2400 cases where 

each case consists of the truth image, the corresponding 1024-view sinogram, the 

corresponding 128-view sinogram, and the corresponding 128-view FBP image. This 

dataset is used to verify the effectiveness of the proposed hybrid domian method. 

3.2 The implementation and trainning of the models. 

During training, we emploied  the Adaptive Momentum Estimation (Adam) to 

minimize the loss function and optimize the models’ parameters. The exponential decay 

rates of the first and second moments are 0.9 and 0.999, respectively,   is 1E-7. The 

network is trained for 400 epochs using the mini-batch training method with a batch size 

of 1. The initial learning rate is set to 0.0001 and then decays by 1% every 10 epochs. 

The models are  implemented based on the deep learning framework Pytorch, and 

trained on a graphic workstation with the CPU of Intel(R) Xeon(R) Silver 4114 @ 2.20 

GHz, and GPU of NVIDIA Titan V 12G. 

3.3 Metric 

To objectively evaluate the performance of the models, this article employs Structural 

Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE), 

the worst-case 25×25 pixel ROI-RMSE(WC_ROI-RMSE) to quantitatively analyze each model. 

The SSIM  is defined as follows: 

𝑆𝑆𝐼𝑀(𝐼, 𝐾) =
(2𝜇𝐼𝜇𝐾 + 𝑐1)(2𝜎𝐼𝐾 + 𝑐2)

(𝜇𝐼
2 + 𝜇𝐾

2 + 𝑐1)(𝜎𝐼
2 + 𝜎𝐾

2 + 𝑐1)
(6) 

where K represents the image with stripe artifacts; I represents the standard image; 
I  and 

K  

are the averages of I and K, respectively; 
I  and 

K  are the variances of I and K, respectively, 

and 
IK  is the covariance of I and K; 

1c  and 
2c  are constants. The SSIM takes values in the 

range [0,1] which is to ascertain how similar a sparse view reconstruction is to the full view 

images. A value of 0 implies that there is no correlation between images, while avalue of 1 

implies that two images are identical. 

The PSNR is defined as follows: 

PSNR(I, K) = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐾

2

‖𝐼 − 𝐾‖2
2) (7) 

where the IMAX  represents the maximum value of the pixel in the image I. The PSNR 

represents the ratio between the maximum possible power of an image and the power of 

corrupting noise that affects the quality of its representation. The higher the PSNR means the 

better image has been reconstructed to match the original image. 

The RMSE  is defined as follows: 

𝑅𝑀𝑆𝐸( 𝐼, 𝐾)=√‖𝐼 − 𝐾‖2
2 (8) 

The WC_ROI-RMSE  is defined as follows: 
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𝑊𝐶𝑅𝑂𝐼 − 𝑅𝑀𝑆𝐸(𝐼, 𝐾) = 𝑚𝑎𝑥√
‖𝑏𝑐(𝐼 − 𝐾)‖2

2

𝑚
(9) 

where 
cb is a masking indicator function for the 25x25 ROI centered on coordinates c in the 

image, and m is the number of pixels in the local area. 

4. Result 

In image domain, to verify the effectiveness of TransCovUNet, we selected 100 sets of CT 

images for testing and compared with FBP and advanced deep learning methods such as Unet and 

Swin-Unet. The reconstructed CT image from the uniformly selected 128 views sinogram is used 

as the input of the models, and processed by the TransCovUNet, Unet and Swin-Unet respectively. 

In the experiment, the computing time for TransCovUNet, UNet, Swin-UNet and FBP to process 

a single image is 0.017s, 0.007s, 0.025s and 0.004s, respectively. It can be concluded that the 

operating efficiency of the classic UNet is better than the model with the Transformer module, 

because the Transformer module contains a large number of fully connected operations, resulting 

in increased computational overhead. 

 

Figure 5:  The reconstructed results of simulated breast datasets from 128 views sinogram using FBP，

UNet，Swin Unet. 

 

 

Figure 6: Quantitative line intensity profiles comparison. The line intensity profiles correspond to the 

central vertical lines in the CT images shown in Fig. 5. 



P
o
S
(
I
S
G
C
2
0
2
2
)
0
1
7

Sparse view CT reconstruction based on fusion learning in hybrid domain Tian Haolai, Ling li, Yu Hu 

10 

Figures 5-6 show the comparison of the experimental results of the models on the test data. 

We can see that for CT image reconstruction with sparse view, the reconstructed slice images 

obtained by the FBP algorithm show severe striping artifacts. Neural network methods such as 

TransCovUNet, UNet, and Swin-UNet effectively remove these artifacts and remain enough 

image details to give visually indistinguishable results. The enlarged image shows that 

TransCovUNet has more complete reconstruction details and clearer image edges than the other 

two advanced neural network methods. Correspondingly, in the quantitative line intensity profiles, 

the reconstruction result of TransCovUNet is closer to the ground truth distribution, which is 

better than that of UNet and Swin-UNet, and the reconstruction result of FBP shows strong 

volatility and discrepancy. Overall, TransCovUNet's reconstructed images have higher accuracy 

in visual effects, effectively suppress stripe artifacts, while remain more image details and closer 

to groundtruth images.  

 

Figure 7: The SSIM and PSNR of UNet, Swin UNet, and TransCNN UNet method. 

This study uses the reconstruction results of 100 sets of test images to calculate the metric of 

image quality. Figure 7 shows the box plots of the SSIM and PSNR values of the reconstruction 

results for each method. The box plot show that, compared with the classical UNet and Swin-

Unet, the mean of SSIM and PSNR for TransCovUNet’s result are both relatively high. Moreover, 

from the distribution shown by the box plot, the SSIM and PSNR value distribution of the 

TransCovUNet reconstruction results are more concentrated, which means the robustness is better. 

Table 1 show the average RMSE and the worst local RMSE of the reconstruction results of each 

model. We can see, compared to the FBP algorithm, UNet, and Swin-UNet, the average RMSE 

and worst local RMSE of the reconstruction results of TransCovUNet are lower. 

Table 1: The mean of RMSE and the Worst-case 25x25 pixel ROI-RMSE of UNet, Swin UNet, and 

TransCNN UNet method. 

Method RMSN WC_ROI-

RMSN 

FBP 0.0057 0.0105 

UNet 0.00051 0.0026 

Swin-UNet 0.00054 0.0025 

TransCNNUNet 0.00042 0.0022 

 

In projection domain, to verify the effectiveness of the modified LapSRN, we selected 100 

sets of CT images for testing and compared with traditional method Bicubic. The uniformly 
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selected 128 views sinogram is used as the input of the models, and processed by the modified 

LapSRN and Bicubic, respectively. The left plot of Fig. 8 show the comparison of the 

experimental results of the models on the test data. We can see that modified LapSRN can 

efficiently estimate the missing projection data, and show very small discrepancy with the ground 

truth. As comparation, the Bicubic couldn’t achieve the same perfermance. In addition, the metrics 

result from SSIM, PSNR, RMSE and WC_ROI-RMSE as show in left plot of Fig. 9 and Table 2 

also confirmed that the modified LapSRN improve the interpolation performance compared with 

Bicubic. Then the 128 views sinogram, and 1024 views sinogram estimated by modified LapSRN 

and Bicubic were reconstructed by FBP, as shown in right plot of Fig. 8.  We can see that Bicubic 

not only couldn’t remove the stripe artifacts effectively, instead of bring in additional artifacts. In 

contrast, the modified LapSRN can remove the stripe artifacts effectively. In addition, the metrics 

result from SSIM, PSNR, RMSE and WC_ROI-RMSE as show in right plot of Fig. 9 and Table 

3 also confirmed that the modified LapSRN show improved results. 

     

Figure 8: The interpolation results of simulated foam datasets from 128 view sinogram using Bicubic, 

modified LapSRN(left), and the reconstruction results of 128 views sinogram, 1024 views sinogram 

estimated by  Bicubic and Lapsn(right).  

 

 

 

Figure 9: The SSIM and PSNR for interpolation result of Bicubic and modified LapSRN(left), and 

reconstruction of 128 views sinogram, 1024 views sinogram estimated by  Bicubic and Lapsn(right).  

 

Table 2: The mean of RMSE and the Worst-case 25x25 pixel ROI-RMSE for interpolation result of 

Bicubic and modified LapSRN. 

Method RMSN WC_ROI-

RMSN 

Bicubic 8.5 43.3 

modified LapSRN 0.2 3.3 
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Table 3: The mean of RMSE and the Worst-case 25x25 pixel ROI-RMSE for reconstruction of 128 views 

sinogram, 1024 views sinogram estimated by  Bicubic and modified LapSRN. 

Method RMSN WC_ROI-

RMSN 

FBP 0.099 0.163 

Bicubic 0.085 0.427 

modified LapSRN 0.004 0.028 

 

 

Figure 10:  The reconstructed results of simulated foam datasets from 128 views sinogram in image 

domain, projection domain, and the fusion result. 

Finaly, the reconstructions in image and projection domain were combined by the DenseFuse 

model. The fussion result is shown in Fig. 10. The fused image show no visiual difference with 

the reconstructions in image and projection domain. The average values of the quality metrics for 

100 images which are obtained by image domain, projection domain and the fusion method are 

shown in Fig. 11 and Table 4. The  fused method has the median in the quality metrics, which 

means that the fusion method can keep the structural information and features without bing in 

additional artifacts, and improve the robustness of the prediction. 

5. Conclusion 

In this paper, a new hybrid domain method based on fusion learning, is proposed to deal with 

the problem of CT image reconstruction with sparse views. The proposed TransCovUNet 

combines Transformer's long-range contextual information modeling capabilities and CNN's local 

structural feature extraction capabilities. Combining TransCovUNet with the traditional analytic 

algorithm FBP effectively solves the problem of stripe artifacts in the process of FBP sparse 

reconstruction. The experimental results show that, in terms of subjective evaluation, the 

reconstructed images obtained by this algorithm retain rich details. Compared with other 

algorithms, the edges, contours and textures are clearer. The proposed algorithm also achieves 

better results than other advanced algorithms in objective performance evaluation metrics. The 

proposed modified LapSRN progressively predicts the projection data of missing view in a 

coarse-to-fine manner, which reduces the computational complexity and  alleviates issues with 

additional artifacts. The experimental results show that, the proposed modified LapSRN achieves 
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better results than the troditional Bicubic method. In addition, we used the DenseFuse model to 

combine the reconstructions from image domain and projection domain, which can make the 

prediction robust.    

 

Figure 11: The SSIM and PSNR for the reconstruction results of simulated foam datasets from 128 views 

sinogram in image domain, projection domain, and the fusion result. 

 

Table 4: The mean of RMSE and the Worst-case 25x25 pixel ROI-RMSE for the reconstruction results of 

simulated foam datasets from 128 views sinogram in image domain, projection domain, and the fusion 

result. 

Method RMSN WC_ROI-

RMSN 

Image domain 0.0123 0.0577 

Projection domian 0.0037 0.0233 

Fusion 0.0065 0.0317 
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