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Software defect prediction aims at identifying defect prone software modules in order to allocate
optimal testing resources. The role of testing in software development life cycle is vital especially
when software systems are becoming more and more complex, representing a suitable environment
for defects. Several researchers have striven to develop models able to determine defective modules
with the aim of reducing time and cost of software testing. Such models are typically trained
on software measurements, known as software metrics, which describe the characteristics of a
software project in terms of e.g., dimension and complexity. These metrics reduce the subjectivity
of software quality assessment and can be relied on for decision making, e.g., to decide where to
focus software tests.
The aim of our work is to employ both feature selection or construction techniques and machine
learning techniques to build software defect prediction models on different kinds of software dataset
metrics (derived from various software projects available in the NASA and Eclipse repositories),
and assess their performances by considering accuracy, precision, recall and area under the
curve. We have used non parametric tests to compute the statistical significance of the obtained
results. The collected metrics belong to three main categories: dimension, complexity and object
orientation. The involved datasets contain class labels, i.e., information on the defectiveness of
the software modules.
To make our study available to research community, we have developed an open source and
extensible R application that supports researchers to load the selected kinds of datasets, to filter
them according to the their features and to apply machine learning techniques.
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1. Background

Software defects might be the cause of several problems during software maintenance or
development, they could lead to major damage and important loss of money. Consequently,
researchers have been striven to find ways to mitigate defects’ influence on the source code via
software testing [1] that is an essential and time-consuming activity carried out during the entire
development process. The distribution of defects in software modules may vary, as a result,
applying the same effort to test all the software modules of a software project would lead to a cost
prohibitive activity and to non optimal results [2]. This explains the motivation behind software
defect prediction (SDP). To support testers and developers in the testing phase, SDP helps find
models that can be used to identify defective-prone modules [3].

In the last decade, machine learning (ML) techniques have been applied to defect prediction [4]
with various approaches, such as Bayesian networks, neural networks, multivariate regression and
ensemble methods [5]. Nevertheless, the construction of a SDP model is a challenging activity
that has seen researches propose different solutions [6–13]. Despite the high number of approaches
the vast majority of SDP models use software metrics as their main source of data. More in
detail, previous studies have relied on code metrics, process metrics or previous defects: these
measurements guarantee a reduction of subjectivity when evaluating defectiveness and have been
relied on for decision making process [14].

In addition to ML, the attention towards feature selection techniques is increasing because of
their ability to affect and improve prediction performances [15]. In previous literature, different
techniques have been explored, since feature selection has been proven to play a vital role in data
preprocessing when it comes to dealing with high dimensionality datasets [16–22]. Independent
dataset features may be irrelevant, i.e. they may have no impact on the target features, and/or
redundant, i.e. they may be highly correlated one-another, and can be removed [23].

The contribution of our work is three-fold: first it explores different feature selection and con-
struction techniques and perform their comparison; secondly, it carries-out a comparison between
different ML-based models; finally it provides an R framework to support researches working on
SDP. More in detail, our framework eases datasets loading and software metrics analysis, provides
guidelines and examples to simplify the application of ML techniques and allows users to reproduce
our work and simplifies the integration and exploration of other techniques.

During our research we have formulated the following research questions:

RQ1 Which feature selection method performs the best?

RQ2 Can unsupervised ML techniques perform better or similarly to supervised ML techniques?

2. Methodology

The main objective of this study has been the development and validation of prediction models
for software defectiveness. A generalized workflow is shown in Figure 1 that schematizes the
actions that have been undertaken to implement this model. The work starts with the datasets
selection, analysis and preprocessing. Then we have worked on the dataset features, built our ML-
based prediction models and evaluated both the different employed features selection and extraction
techniques as well as ML algorithms.
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Figure 1: Methodology Overview.

2.1 Dataset Construction

In this study, two souces of data have been considered: the Eclipse repository [24] and the
NASA one [25].

Our datasets have undergone a preprocessing activity that included: the removal of observations
with missing or not available (i.e., NA) values, the conversion of defective categorical variables and
multi-defect labels to one binary facet label. Furthermore, the Eclipse project-level datasets have
been combined in a unique one.

2.1.1 Eclipse Datasets

The Eclipse datasets are related to five different software projects:

• Eclipse JDT Core: one of the most popular IDE (integrated development environment) for
coding in Java and other programming languages. It is written mostly in Java.

• Equinox Framework: a Java framework for developing and deploying modular software
programs and libraries. It is part of the Eclipse project.

• Apache Lucene: a Java library that provides users with indexing and search features.

• Mylyn: a framework for Eclipse providing task management tools for developers.

• Eclipse PDE UI: plug-in development environment (PDE) that provides tools to create,
develop, test, debug, build and deploy Eclipse plug-ins, fragments and features.

Table 1 shows the properties of the Eclipse datasets. There are 17 variables and a response
variable, called defective, which contains the value 1 if the class is defective and 0 otherwise. Each
record of the Eclipse dataset contains 6 Chidamber and Kemerer (CK) software metrics, 11 object
oriented metrics and a binary defective label. All the variables, including the response, are numeric.
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Variables Information
6 CK Software metrics CBO: coupling between objects; DIT: depth of inheritance tree;

LCOM: lack of cohesion methods; NOC: number of children;
RFC: response for a class; WMC: weighted method count.

11 Object oriented software
metrics

e.g., number of lines, number of methods, number of attributes.

1 defective label Binary response variable.

Table 1: The Eclipse datasets properties.

We have analysed the distribution of the values of the software metrics. Figure 2 shows the
CBO histogram and the WMC quantile plot of the Eclipse project, highlighting a non-normal
distribution of their values. The other metrics’ distributions follow similar patterns.

Figure 2: The CBO histogram on the left side and WMC quantile plot on the right side.

Figure 3 shows the Shapiro-Wilk boxplot for the Eclipse datasets. The closer to zero are the
values, the more their distribution deviates from normality. This is true for all variables, while
LCOM and number of public attributes have the strongest deviation from normality.

The highest percentage of defective classes is reached in the Equinox dataset (39.81%), while
the lowest is in the Lucene dartaset (9.26%).

2.1.2 NASA Datasets

The PROMISE repository [25] is owned by NASA and contains twelve datasets, each corre-
sponding to a software project. The included projects are:

• CM1: software developed in C for a NASA spacecraft instrument.

• JM1: software that computes simulations in order to generate real-time predictions about
ground systems. Developed in C.
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Figure 3: The Shapiro-Wilk boxplot for the Eclipse datasets.

• KC1, KC3: software for storage management developed in C++. It receives and processes
ground data. It is split into two projects, where KC1 is the main one and the other is a relative
component.

• MC1, MC2: no information available on these projects.

• MW1: no information available on this project.

• PC1, PC2, PC3, PC4, PC5: flight software developed for a satellite orbiting around earth.
PC1 is the main project, while the others are minor projects connected to the main one.
Written in C.

Table 2 shows the properties of the NASA datasets, containing different number of variables
that range from 22 to 40.

Variables Information
Lines of code metrics counting the number of lines of code, comments, percentages
McCabe’s complexity
metrics

metrics computed starting from the McCabe’s Cyclomatic Complex-
ity

Halstead complexity
metrics

different complexity metrics that are computed starting from the num-
ber of operands and operators.

Other complexity met-
rics

complexity metrics that are not based directly on McCabe’s or Hal-
stead’s complexity.

Density metrics complexity metrics with respect to the number of total paths in an
instance of code.

1 defective label binary response variable.

Table 2: The NASA datasets properties.

We have analysed the distribution of the values of the metrics: the values of NASA dataset
variables are non-normally distributed, there are very few exceptions. Figure 4 shows the his-
togram of the ESSENTIAL_COMPLEXITY values on the left side, and the quantile plot of the
HALSTEAD_EFFORT variable on the right side.
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Figure 4: The ESSENTIAL_COMPLEXITY histogram on the left side and HALSTEAD_EFFORT quantile
plot on the right side.

Figure 5 shows the Shapiro-Wilk boxplot for the NASA datasets: most variables in the NASA
datasets are below 0.9, so they are non-normally distributed.

Figure 5: The Shapiro-Wilk on the NASA datasets.

2.2 Feature Correlation analysis

Given the non-normality distribution of our variables, we have conducted a variable correlation
analysis. It is known that correlation between variables may negatively affect the performance of a
prediction model, since our software metric values have been proved to be skewed, our expections
were to notice a high variables correlation. This has been confirmed by the application of Spearman
correlation.

Figure 6 shows the existing high correlations for the CK metrics, i.e., lcom, rfc, wmc, and
cbo (detailed in Table 1) for the Eclipse software project. Figure 7 shows high correlations for the
Halstead metrics in the NASA CM1 software project.
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Figure 6: The correlation between software metrics for the Eclipse software project.

Figure 7: The correlation between software metrics for the NASA CM1 software project.

2.3 Feature Selection and Construction

Correlation between variables can be reduced by applying feature selection and/or feature
construction techniques [26]. We have followed two different approaches: in the former we
have used Principal Component Analysis (PCA), which creates new features as a combination of
the original features provided by the dataset [27]; in the latter, we have analysed three metric
selection techniques, i.e. Backward Elimination, Forward Selection and Least absolute shrinkage
and selection operator (LASSO) [28].

Backward Elimination [29] is an algorithm that reduces the number of variables in a model.
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First step of the algorithm consists of fitting a model containing all the independent variables and
the response variable. The second step consists of fitting other models containing a variable less
than the original model. For each model the Akaike Information Criterion (AIC) is computed and
the best model is selected [30]. From the best model of this step, one variable at a time is removed
and other models are evaluated. When do we stop? When the value of AIC does not improve
significantly by removing a variable.

Forward Selection [31] works similarly to Backward elimination but in an opposite direction.
First step we have a model with the only response variable. Second step, we have many models
containing each one variable we have added to the model of the first step. Then a Model evaluation
through AIC is done, and selected the best model to which is added another variable and so on.
When do we stop? Adding a variable does not significantly improve the fit of the model.

LASSO [32] is a regression method that shrinks the parameters of the regression associated
with each variable. In our context it has been used to perform variable selection.

Figure 8 shows how the different feature techniques reduce the number of features involved.
Backward and LASSO selection methods tend to select more variables than the other methods,
especially in the Eclipse PDE dataset and in many NASA datasets.

Figure 8: The number of features selected by feature techniques.

2.4 Model Construction

Our models have exploited both supervised and unsupervised techniques. Among the super-
vised techniques, Naive Bayes [33] and Random Forest [34] have been considered: the former is
based on Bayes’s theorem; the latter is an ensemble technique based on multiple decision trees.
For the unsupervised techniques, Neural Gas Clustering[35] and Spectral Clustering [36] have been
considered: the former is part of artificial neural network; the latter is based on connectivity.

Since our datasets are all labeled, supervised techniques would be the best choice, however,
in software engineering field, software datasets are more commonly unlabelled because software
projects usually lack defect labels and/or historical data, consequently, we have used unsupervised
techniques and compared to the supervised ones [37].
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To compare the performance of our models, a confusion matrix for every application of each
technique has been computed: these applications are on 17 complete datasets, 17 selected by
backward elimination, 17 selected by forward selection, 17 selected by LASSO and 17 selected by
PCA. Each model has been assessed with the following performance indicators:

• accuracy [38] is the number of correct predictions (which are the negatives and positives
correctly identified) with respect to the total population;

• precision [39] is the proportion of instances that are relevant between the ones that have been
considered positive;

• recall [4] is the proportion of relevant instances classified correctly;

• area under the curve (AUC) [40] plots the recall (or true positive rate) against the false
positive rate.

2.5 Feature Selection and Construction Evaluation

Figure 9 shows the accuracy values for all the ML techniques, highlighting that Random Forest
has obtained the best results in every feature selection method. PCA gives the worst results when
used with Spectral Clustering.

Figure 9: The accuracy performance indicator - ML techniques are reported from the top left to the bottom
right starting with the Naive Bayes up to the Spectral Clustering.
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Figure 10 shows the precision values for all the ML techniques, highlighting that Random
Forest has achieved the best results. On average all methods achieve values greater than 0.8:

Figure 10: The precision performance indicator - ML technique are reported from the top left to the bottom
right starting with the Naive Bayes up to the Spectral Clustering.

Figure 11 shows the recall values for all the ML techniques, highlighting that except Spectral
Clustering, recall values are very high (about 0.9). Most defective classes are correctly identified.
PCA has a negative influence on unsupervised methods.

Figure 12 shows that AUC values are on average lower that other performance indicators.
The Spectral Clustering technique achieves 0.65. PCA performs worse that other methods when
combined with unsupervised methods.

Since the results are not so clear-cut, it is necessary to explore them in depth considering all
the evaluation measures when necessary (instead of considering e.g. only accuracy or AUC), and
using nonparametric methods.

How can we select the best feature selection technique for each ML technique? We have
used the average values of our performance indicators. The pairs between feature selection and
ML technique are listed in table Table 3. Figure 13 shows the results of the best feature selection
technique for each ML technique with respect to AUC.

We have applied the Friedman test [41] on the results of each ML technique. The Friedman
test showed that for supervised methods different feature selection methods do not influence the
performance of the algorithm; on the contrary, for unsupervised methods, the choice of a feature
selection or construction technique has an impact on the algorithms.
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Figure 11: The recall performance indicator - ML technique are reported from the top left to the bottom
right starting with the Naive Bayes up to the Spectral Clustering.

Since the Friedman test does not show the best selection method, we have applied the Nemenyi
test [42] on the two unsupervised methods. This test has selected Backward Elimination and
Forward Selection as the best performing feature selection method for Neural Gas Clustering. As
regards Spectral Clustering, the complete set of features or LASSO are the best choices for improve
the model performance.

2.6 Model comparison

Unsupervised techniques are the most used in literature when dealing with software defect
prediction, because labels are not always available for software systems. As a consequence, we
have detailed the AUC results. Spectral Clustering achieves a performance comparable to supervised
techniques.

According to the AUC results shown in Figure 13 on the bottom right side, we have applied
the Friedman test, that indicated a statistical difference in the results of the methods. Consequently,
we have applied the Nemenyi test for multiple comparison that computed a critical distance CD =
1.138, as shown in Figure 14.

Table 4 shows which model - composed by feature selection and ML technique - performs
best according to the results obtained by applying the Nemenyi test. Spectral Clustering is the best
technique when applied on the whole dataset and there is no significant difference between the
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Figure 12: The AUC performance indicator - ML technique are reported from the top left to the bottom
right starting with the Naive Bayes up to the Spectral Clustering.

performance of Random Forest, Naive Bayes and Spectral Clustering since their ranking difference
is not bigger than CD. The same conclusions can be drawn by analysing Figure 14

In conclusion, our purpose has been to employ both supervised and unsupervised methods and
comparing them by using different feature selection and construction techniques. Both Friedman
Test and Nemenyi test have been used to assess the overall performance. Spectral Clustering
on the all feature datasets has shown better or similar performance to Naive Bayes and Random
Forest which use respectively Backward Elimination and Forward Selection. The tests conducted
with Nemenyi test for ML techniques show that their difference in performances is not statistical
significant. On the contrary, Neural Gas Clustering is found to be the worst performing algorithm
to identify defective classes.

3. Results and Discussions

In this section we first provide an answer to our research questions.
RQ1: Which feature selection method performs best? There is no feature selection or con-

struction method that can perform better than others. Using Naive Bayes, Backward Elimination
seems the method that achieves the highest score; applying Random Forest, Forward Selection is the
technique that performs the best. Regarding unsupervised methods, Neural Gas Clustering works
better with Backward Elimination and Spectral Clustering with the complete set of features.

12



P
o
S
(
I
S
G
C
2
0
2
2
)
0
2
0

Software defect prediction: A study on software metrics using statistics and ML Marco Canaparo

Figure 13: The best feature selection technique for each ML technique with respect to performance indicator
- performance indicators are reported from the top left to the bottom right starting with accuracy up to AUC.

RQ2: Can unsupervised ML techniques perform better or similarly to supervised ML tech-
niques? Spectral Clustering is the unsupervised method that has proven to perform similarly to
supervised methods. Using all the variables of the datasets, it achieves an average of 0.66 for AUC.
Whereas Naive Bayes score 0.65 average AUC with backward selection and Random Forest 0.61
with Forward Selection.

Furthermore, we provide some details on the developed R framework available on github [43].
The main R package is called rsma that includes a set of functions to run different statistical learning
algorithms over the supported datasets. In addition to Eclipse and NASA software datasets, other
software metrics are supported. To make easy its usage, a small demo is available in the rsma.demo
github project.

4. Conclusions

In this paper we have employed both feature selection or construction techniques and machine
learning techniques to build software defect prediction models on the Eclipse and NASA data
software metrics, and assess their performances by considering accuracy, precision, recall and area
under the curve. We have also used non parametric tests to compute the statistical significance of
the obtained results.
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Performance Indicator ML Technique Feature Selection
Accuracy Naive Bayes PCA
Accuracy Random Forest Backward elimination
Accuracy Neural Gas Clustering Complete feature set
Accuracy Spectral Clustering Complete feature set
AUC Naive Bayes Backward elimination
AUC Random Forest Forward Selection
AUC Neural Gas Clustering Backward elimination
AUC Spectral Clustering Complete feature set
Precision Naive Bayes PCA
Precision Random Forest Backward elimination
Precision Neural Gas Clustering Forward Elimination
Precision Spectral Clustering LASSO
Recall Naive Bayes Backward Elimination
Recall Random Forest Forward Selection
Recall Neural Gas Clustering Complete feature set
Recall Spectral Clustering Complete feature set

Table 3: Performance Indicator with respect to ML and feature selection techniques

Figure 14: Nemenyi multiple comparison - the best performing classifiers according to AUC.

There is no feature selection or construction method that can perform better than others. Using
Naive Bayes, Backward Elimination seems the method that achieves the highest score; applying
Random Forest, Forward Selection is the technique that performs the best. Regarding unsupervised
methods, Neural Gas Clustering works better with Backward Elimination and Spectral Clustering
with the complete set of features.

Spectral Clustering is the unsupervised method that has proven to perform similarly to super-
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Rank 1 (worst) Rank 2 Rank 3 Rank 4 (best)
NG - Backward RF - Forward NB - Backward SC - Complete

1.647 2.118 2.941 3.294

Table 4: Nemenyi test.

vised methods. Using all the variables of the datasets, it achieves an average of 0.66 for AUC.
Whereas Naive Bayes score 0.65 average AUC with backward selection and Random Forest 0.61
with Forward Selection.

To make our study available to research community, we have also developed an open source
and extensible R application called rsma that supports researchers to load the selected kinds of
datasets, to filter them according to the their features and to apply machine learning techniques.
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5. Appendix

Tables 5, 6, 7 and 8 show the AUC results of each algorithm applied to all the datasets. Table
9 shows the AUC values of our models fopr each dataset. Table 10 shows the p-values obtained by
the techniques over each dataset.
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Table 5: AUC - Naive Bayes.

Project Complete Backward Forward LASSO PCA
Eclipse 0.70 0.67 0.74 0.67 0.71
Equinox 0.65 0.65 0.72 0.77 0.70
Lucene 0.64 0.63 0.56 0.60 0.56
Mylyn 0.65 0.62 0.57 0.58 0.65
PDE 0.64 0.59 0.66 0.65 0.58
CM1 0.69 0.66 0.61 0.61 0.46
MW2 0.72 0.81 0.62 0.82 0.59
PC1 0.61 0.70 0.70 0.64 0.69
PC3 0.64 0.61 0.67 0.70 0.66
PC4 0.70 0.78 0.68 0.72 0.67
JM1 0.60 0.62 0.61 0.63 0.62
KC1 0.64 0.59 0.60 0.62 0.63
KC3 0.56 0.52 0.53 0.46 0.60
MC2 0.63 0.72 0.78 0.58 0.70
MC1 0.52 0.47 0.59 0.58 0.48
PC5 0.69 0.68 0.65 0.63 0.65
PC2 0.63 0.77 0.50 0.66 0.57

Table 6: AUC - Random Forest.

Project Complete Backward Forward LASSO PCA
Eclipse 0.67 0.72 0.70 0.67 0.72
Equinox 0.73 0.70 0.65 0.77 0.68
Lucene 0.52 0.56 0.57 0.60 0.52
Mylyn 0.57 0.58 0.59 0.58 0.59
PDE 0.57 0.55 0.54 0.65 0.53
CM1 0.50 0.49 0.50 0.61 0.49
MW2 0.54 0.49 0.69 0.82 0.54
PC1 0.61 0.59 0.53 0.64 0.60
PC3 0.53 0.53 0.54 0.70 0.55
PC4 0.65 0.66 0.75 0.72 0.69
JM1 0.58 0.57 0.57 0.63 0.56
KC1 0.64 0.62 0.63 0.62 0.60
KC3 0.54 0.63 0.78 0.46 0.62
MC2 0.57 0.61 0.66 0.58 0.50
MC1 0.50 0.50 0.55 0.56 0.50
PC5 0.65 0.66 0.67 0.63 0.67
PC2 0.50 0.50 0.50 0.66 0.50
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Table 7: AUC - Neural Gas Clustering.

Project Complete Backward Forward LASSO PCA
Eclipse 0.57 0.52 0.58 0.65 0.51
Equinox 0.59 0.59 0.62 0.63 0.62
Lucene 0.54 0.55 0.58 0.54 0.62
Mylyn 0.56 0.55 0.59 0.57 0.49
PDE 0.59 0.59 0.60 0.59 0.47
CM1 0.60 0.59 0.69 0.61 0.52
MW2 0.72 0.71 0.72 0.74 0.70
PC1 0.60 0.66 0.65 0.66 0.47
PC3 0.51 0.49 0.50 0.55 0.50
PC4 0.55 0.56 0.58 0.58 0.71
JM1 0.53 0.55 0.55 0.53 0.54
KC1 0.59 0.59 0.58 0.59 0.56
KC3 0.62 0.62 0.70 0.63 0.61
MC2 0.58 0.58 0.69 0.67 0.54
MC1 0.62 0.54 0.60 0.68 0.38
PC5 0.53 0.53 0.60 0.54 0.59
PC2 0.53 0.53 0.50 0.38 0.50

Table 8: AUC - Spectral Clustering.

Project Complete Backward Forward LASSO PCA
Eclipse 0.71 0.50 0.70 0.73 0.49
Equinox 0.68 0.71 0.70 0.71 0.70
Lucene 0.64 0.64 0.59 0.63 0.57
Mylyn 0.63 0.62 0.65 0.63 0.55
PDE 0.66 0.66 0.67 0.65 0.60
CM1 0.65 0.63 0.70 0.64 0.48
MW2 0.71 0.70 0.70 0.70 0.59
PC1 0.68 0.66 0.75 0.74 0.54
PC3 0.70 0.66 0.50 0.71 0.51
PC4 0.65 0.65 0.68 0.65 0.65
JM1 0.64 0.64 0.64 0.63 0.59
KC1 0.63 0.63 0.63 0.63 0.63
KC3 0.61 0.61 0.69 0.67 0.62
MC2 0.68 0.67 0.68 0.67 0.63
MC1 0.67 0.68 0.73 0.71 0.64
PC5 0.64 0.63 0.61 0.64 0.40
PC2 0.74 0.75 0.70 0.70 0.50
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Table 9: Comparison of ML techniques through AUC values.

Project NB - Backward RF - Forward NG - Backward SC - Complete
Eclipse 0.667 0.698 0.515 0.709
Equinox 0.654 0.648 0.594 0.683
Lucene 0.628 0.566 0.554 0.642
Mylyn 0.619 0.592 0.547 0.628
PDE 0.592 0.545 0.592 0.658
CM1 0.665 0.505 0.589 0.650
MW2 0.807 0.691 0.713 0.711
PC1 0.702 0.528 0.659 0.676
PC3 0.615 0.545 0.494 0.703
PC4 0.776 0.754 0.556 0.649
JM1 0.623 0.574 0.545 0.636
KC1 0.590 0.629 0.593 0.632
KC3 0.525 0.778 0.623 0.608
MC2 0.723 0.659 0.577 0.679
MC1 0.474 0.550 0.545 0.672
PC5 0.681 0.673 0.525 0.636
PC2 0.769 0.497 0.528 0.738

Table 10: Friedman test p-values over each results dataset.

Evaluation Measures Naive Bayes Random Forest Neural Gas Clustering Spectral Clustering
Accuracy 0.324 0.972 0.000 0.000
F-score 0.190 0.967 0.000 0.000
AUC 0.621 0.141 0.006 0.000
Recall 0.109 0.766 0.000 0.000
Precision 0.000 0.145 0.001 0.002
Specificity 0.090 0.023 0.000 0.000
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