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A Weakly-supervised Method for Encrypted Malicious Traffic Detection Junyi Liu

In order to defend against complex threats and attacks in cyberspace, IHEPSOC has been developed
and deployed at the Institute of High Energy Physics Chinese Academy of Sciences (IHEP),
which is considered as an integrated security operation platform to ensure a secure state of
the network and scientific researches in IHEP. Nowadays the integration of the state-of-the-art
cyber-attack detection algorithms for IHEPSOC has become an important task for enhancing the
attack discovery capability of IHEPSOC. Meanwhile, malicious traffic detection comes to be
increasingly challenging. With the extensive application of data encryption techniques to protect
communication security and privacy, malicious software could also hide their attack information,
making most of malicious traffic identification methods such as port-based methods and DPI
(Deep Packet Inspection)-based methods ineffective.

Machine learning based detection methods have been proposed to address the encrypted malicious
traffic detection problem, which usually involve constructing statistical features of internet traffic
flow and training classification models for detecting encrypted malicious traffic. There are some
drawbacks in the above-mentioned detection methods. First of all, feature selection is a time-
consuming procedure that depends on expert experience. Secondly, most traffic classification
schemes employ supervised learning methods, and the acquisition of large fine-grained labeled
datasets is a tedious task. In this paper, we propose a weakly-supervised method for encrypted
malicious traffic detection, which combines the generative adversarial network (GAN) and the
multiple instance learning detector to achieve the fine-grained classification of encrypted traffic
with a small number of coarse-grained labeled samples and a large number of unlabeled samples.
Thus, we could focus on the accuracy of the malware detector instead of spending efforts on
dataset annotation with the weakly-supervised learning approach. To start with, we convert
the traffic data into single-channel grayscale images in the proposed method, and then input
them into the GAN, so that the original traffic features can be learned without manual effort.
Therefore, the improved semi-supervised learning generative adversarial network, which is based
upon convolution neural network (CNN) architecture, generates more synthetic samples for data
augmentation and addresses the insufficiency of labeled samples. In addition, a multi-instance
detector with an attention mechanism is used to identify encrypted malicious traffic from coarse-
grained labeled data. We validate the proposed approach on two public datasets. Compared
with other malicious traffic detection methods, the experimental results show that our proposed
framework can effectively perform fine-grained detection of encrypted malicious traffic.
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1. Introduction

In recent years, with the rapid development of the Internet, especially the mobile Internet and
the Internet of Things, IT devices have proliferated, and network traffic has become massive and
complicated. How to effectively analyze and utilize network traffic in the explosive growth of data
has become an important research direction. At the same time, security breaches, ransomware,
APT attacks, and other network security threats emerge in an endless stream, causing serious harm
to the normal work and life of ordinary users and the entire Internet environment. The global
and distributed nature of high-energy physics computing makes it more vulnerable to threats from
different geographical areas and different attack vectors. To counter these threats, cooperation within
the high-energy physics community is required, while a proper Security Operations Centre (SOC)
is essential. In conjunction with the Institute of High Energy Physics of the Chinese Academy of
Sciences, the IHEPSOC]1] was developed, integrating several tools and models working in tandem
to enable functions such as threat intelligence sharing and network intrusion detection.

For more accurate malicious traffic detection, traffic classification is required. Traffic classi-
fication is usually the first step in network anomaly detection and plays an important role in the
field of network security. It is of great significance for recording and managing network operating
conditions, defending against cyber attacks, and ensuring the quality of service.[4] Depending on
the granularity of network traffic, traffic can be classified according to different levels such as
network protocols, network traffic types, and network applications. Network protocol classifies
traffic into different protocols[22], such as SSL, DNS, and SMTP. Network traffic type classifies
traffic into traffic types [22] such as P2P and VoIP. Network application classifies traffic into specific
applications [22] such as Wechat, Gmail, Youtube, etc. The finer the granularity of traffic classi-
fication, the more conducive to network monitoring. With the widespread adoption of encryption
technologies such as TLS [23], most traffic today is transmitted encrypted. Encrypted traffic is a
double-edged sword, protecting privacy while providing a breeding ground for hidden malicious
traffic, and putting forward higher requirements for detection systems. Fine-grained classification
of encrypted traffic and detection of malicious traffic from it is a task worth investigating.

The contributions of this paper are as follows.

- By transforming traffic into images, not only making the system possible to visualise the
difference between different flows, but also solving the traffic classification problem with advanced
image classification techniques.

- By introducing a generative adversarial network to increase the diversity of data, and solve
the problem of a small number of labeled samples in a dataset.

- By combining CNN and LadderNet as a detector, and using the multi-instance learning idea
for training, the fine-grained classification of encrypted malicious traffic is realized, and the problem
of low classification accuracy is solved.

The rest of the paper is organized as follows. Section 2 introduces related work and techniques.
Section 3 describes the system architecture and the implementation of the algorithm. Section
4 presents some experiments of comparison between the proposed method and other encrypted
malicious traffic detection algorithms. Section 5 provides conclusions and future work.
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2. Related Work

2.1 Encrypted malicious traffic detection

Rule-based traffic classification methods include port-based and DPI (Deep Packet Inspection)-
based methods, mainly by extracting key information such as ports or payloads in network packets
according to the corresponding mapping rules for matching verification, which are more mature
in application. But with the emergence of technologies such as traffic encryption and increased
complexity of traffic data, rule-based detection methods gradually fail to meet today’s network
traffic classification and identification needs.

Traffic classification methods based on classical machine learning algorithms have been subject
to much research over the past decade or so, however, there are many difficulties and drawbacks
in practical applications, such as very complex feature engineering driven by domain experts, poor
performance in large data scenarios, and poor real-time and adaptive performance. Unlike most
traditional machine learning algorithms, deep learning networks are able to perform automatic
feature extraction without human intervention, which makes them a more desirable method to
classify encrypted traffic.

One of the most important advantages of deep learning is the replacement of hand-designed
features with effective algorithms for feature learning and hierarchical feature extraction. The
process of classifying traffic based on deep learning is divided into three steps in [2]. First, model
inputs are defined and designed based on the raw packet or traffic statistics features. Then, the
appropriate model and algorithm are selected based on the characteristics of the model and the
purpose of the classifier. Finally, the deep learning network is trained to automatically extract the
traffic features and associate the inputs with the corresponding category labels.

Lopez-Martin et al. were the first to apply recurrent neural networks (RNN) and convolutional
neural networks (CNN) to the network traffic application layer identification problem [3]. Wang
et al [4] proposed an end-to-end encrypted traffic classification method based on one-dimensional
convolutional neural networks (1ID-CNN). Gao et al in [5] proposed a deep belief network based
model and Javaid et al. [6] proposed a malware traffic identification method using sparse autoen-
coders. All of these studies have contributed to the application of deep learning techniques to the
design of network intrusion detection systems (NIDS).

The above studies all belong to two basic learning strategies for deep learning: one is supervised
methods such as BP neural networks, decision trees, and support vector machines, where supervised
learning performs well but has high requirements for labelling of samples during training; the other
is unsupervised methods such as PCA and K-Means clustering, where unsupervised learning does
not require data labelling but the performance of the models is relatively poor. In [7], a weakly
supervised learning between the above two learning strategies is proposed, which is classified into
three types according to the different cases of weakly labelled samples: incomplete supervised
learning, inexact supervised learning, and inaccurately supervised learning. Under the weakly
supervised learning strategy, the cost of dataset sample labelling is greatly reduced, which is more
suitable for realistic scenarios with large amounts of data.

Therefore, this paper uses a weakly supervised learning strategy based on raw traffic data for
the task of classifying encrypted traffic for malware.
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2.2 Generative adversarial network

Generative adversarial network (GAN) [8] offers a promising approach to learning deep rep-
resentations without the need for large amounts of annotated training data. Due to the success of
GAN in applications such as computer vision and natural language processing, the technique has
only been applied to the field of cyber security in recent years.

In traffic classification, several researchers have proposed methods to generate traffic sam-
ples using GAN and its improved algorithms to address the difficulties of sample labelling. A
traffic data enhancement method, PacketCGAN, is proposed in [9], which can take advantage of
CGAN to generate specified samples conditional on the type of incoming applications that are fed,
overcoming the limitation of network data imbalance. The FlowGAN proposed in [12] trains the
generated encrypted traffic data samples in combination with real data to improve the performance
of application recognition on small samples. In [10], the authors propose ByteSGAN and embed
it in an SDN (Software Defined Network) edge gateway, a technique that achieves the goal of flow
classification in a fine-grained manner, further improving classification performance and network
resource utilisation.

In this paper, we use the DCGAN architecture proposed by Radford et al. in [11], which
combines CNN in supervised learning and GAN in unsupervised learning, replacing the generator
and discriminator in the original GAN with two convolutional neural networks, and making some
changes to the structure of the convolutional neural network to improve the quality of the samples
and the speed of convergence. We also refer to the training idea of SGAN in [13], which is different
from the binary classification model of the original GAN, but becomes multi-classification, and
trains both the generator and the semi-supervised classifier to achieve a generative model with
synthetic data closer to the real data, and a better semi-supervised classifier.

2.3 Multiple-instance learning

The concept of multiple-instance learning (MIL) was first introduced in [14], and it is often
used in combination with support vector machines to form MI-SVM [15] or with convolutional
neural networks to form the MIL-CNN [16] framework. MIL-based techniques have been widely
used in a variety of scenarios, such as MIL-Boost [17] for target tracking, MCIL [18] for medical
diagnosis, and MILCUT [19] for natural image segmentation.

In the area of malware detection, the approach presented in [20] describes the implementation
of a traffic classifier as a superposition of two multi-example learning problems and shows how to
map the multi-example learning problem to neural network architecture. The MIL-5min classifier
proposed in [21] classifies URLs based on all network traffic observed within a 5-minute window,
allowing for the training of coarse labels.

One of the advantages of multiple-instance learning is that it reduces the amount of manual
labelling of data. Weakly labelled data is a prominent problem in medical imaging, where images
described by a single label (benign/malignant) are often learned by multiple examples to find regions
of interest (ROI). Inspired by this we integrate multi-exemplar learning into a convolutional neural
network (CNN) that can learn an exemplar-level classifier to make predictions about malicious
traffic and pinpoint the location of malicious traffic in the original traffic packet.
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3. System Architecture

As shown in Figure 1, the system architecture of our work consists of three modules, including
a data preprocessing module, a data annotation module, and a malicious traffic detection module.
The following is a detailed introduction to each module.
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Figure 1: The system architecture of proposed method.

3.1 Data Preprocessing Module

The captured raw traffic data is usually stored in pcap file format and the file sizes are not
uniform, so these raw files cannot be fed into the neural network directly. We need to preprocess
the pcap files, split them into a uniform size, and convert them to several grey-scale images that
could be used for traffic classification by the subsequent deep learning network model. The data
preprocessing module consists of three steps: traffic split, traffic clean, and image conversion.
Figure 2 shows the procedure of preprocessing.

Network i . _ Image
Traffic |:> Traffic Split |:> Traffic Clean |:> Convefsion |:> Grey Images

Figure 2: The steps of data preprocessing module.

Traffic Split The purpose of this step is to convert the raw flow to small, workable units at the
functional level. The raw traffic data is made up of some pcap files, each of which consists of a set
of packets of different sizes. The pcap file can be denoted as P = {py, p2, ..., Pn}, Where n is the
number of packets in the file. Each packet of the pcap file is denoted as p; = (x;, l;, t;), where x; is
the five-tuple given by (source IP, destination IP, source port, destination port, transport protocol)
which could identify a specific packet, /; is the byte length of the packet, and #; is the start time of
the packet transmission.

The two types of split granularity often used in traffic classification studies are flow and
session. It is defined that a group of packets with the same five-tuple belong to a flow, which is
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denoted as F = {p; = (x1,11,t1), p2 = (x2,12,12), eee, P = (X, L, 1) }, Where x1 = xp = ... = X,
tf < tp < ... < ty. A session includes all packets of the bidirectional flow. It is denoted as
S=A{p1 = (x1,11,t1), p2 = (x2,12,82)5 .., pn = (Xn, Ly, 1)}, where in x;,i = 1,2, ..., n, the source
IP and destination IP can be interchanged. Previous studies [24] have shown that session-level
recognition is effective in detecting abnormal traffic, and session can contain more information than
flow. So in this step, we split the continuous raw traffic into small pcap packets based on the session.

The open-source tool SplitCap is used for traffic splitting. It is designed to split captured PCAP
files into smaller files based on a criterion, such as IP address, five-tuple, or MAC address. In this
system, we have used SplitCap to split raw traffic into multiple small pcap packets according to the
five-tuple. This way we will get a TCP or UDP session in a separate small pcap file after splitting.

Traffic Clean This step removes some small sessions because they don’t contain enough
payload sizes and do little help to traffic classification. Some assisted packets should be removed
as well. For example, Domain Name Service (DNS) packets that are used for hostname resolution
are useless for traffic classification. So as to TCP sessions, the SYN packets, ACK packets, and
FIN packets contain no payload in the transport layer. These redundant packets should be removed
to reduce the subsequent workload. What’s more, MAC address and IP address cannot be used
as training features in traffic classification, and these information will interfere with the feature
extraction process of the neural network and may cause the model overfitting, so they must be
removed at random. This process is named traffic anonymisation [26].

Image Conversion In order to ensure a uniform data length, each pcap file after data cleaning
is cropped to a group of 784 (28*28) bytes [27]. If the file is larger than 784 bytes, then only the
first 784 bytes are retained; these bytes already contain enough payload for classification. When the
file’s length is insufficient, we pad with 0x00 at the end.

Each byte is an integer between 0 and 255 and is represented as a pixel, thus transforming each
byte into a single-channel grey-scale image of size 28%28. Therefore, the intrinsic characteristics
of the traffic can be reflected in these images. Figure 3 shows some gray-scale images of different
application types after traffic conversion. It can be seen that the images of different types of
application traffic have a degree of distinction.

Finally, the file containing all the pixel sequences is converted into an IDX format file for
input into the deep learning model. The IDX file format is a simple format for vectors and
multidimensional matrices of various numeric types, and it is also a standard input format for many
neural networks such as CNN.

3.2 Data Annotation Module

For the problem that the dataset only contains a small number of labeled samples, it is necessary
to expand and label the samples.

As shown in Figure 4, the data annotation module is based on a modified semi-supervised
GAN, consisting of two networks, the generator G and the discriminator D. The generator G
receives a random noise vector z to generate synthetic samples x* = G(z). We input the generated
samples x*, the labeled samples and their labels in real data (x,y) and the unlabeled samples
x together into the discriminative network D. The discriminator is able to learn the probability
of distribution of each type of data. The discriminator in the original GAN structure can only
implement binary classification, determining whether the data is true or fake, which is belonging to
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Figure 3: Visualisation of different application traffic.
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Figure 4: The network architecture of data annotation module.

unsupervised learning. The semi-supervised learning generative adversarial network (SSLGAN)
then implements an N + 1 class classifier after the discriminator, where the first N classes are those
contained in the original dataset and the N + 1th class are the generated samples. From this, it can
not only distinguish whether the data comes from the real environment or the generator synthesis,
but also complete the multi-classification task.

From the above procedure, it can be seen that the loss function of a semi-supervised GAN
consists of three components. For the labelled samples in the training set, we consider the probability
that the predicted label is in the corresponding class. For the unlabelled samples in the training
set, the key point is the probability that the predicted label is not in the N + 1th class. And for the
generated samples, we consider the probability that the predicted label is in the N + 1th class. The
loss functions of three components are shown from Equation(1) to Equation(3), where p 444 is the
distribution probability of true samples, p¢ is the distribution probability of generated samples and
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Pmodel 1S the probability of the predicted classification.

Liabetea = Ex,y~pdam(x,y) [lOngodel ()’|X, y < N + 1)] (1)
Luntabeled = Ex~pdam (x) [108(1 - pmodel(y =N+ llx))] (2)
Lgenerated = Ex~pG (x) [Zngmodel (y =N+ llx)] 3)

The generator G and the discriminator/classifier D/C are jointly trained, and the network
parameters are updated iteratively until the Nash equilibrium is reached and the network converges.
The overall optimization objective function of this module is expressed as Equation(4):

LSSLGAN(G, D) = mCl;n mgx(Llabeled + Luniabeled + Lgenerated) 4

3.3 Malware Traffic Detection Module

For the problem that some of the labels in the dataset are coarse-grained, we use multiple-
instance learning (MIL) in the detection module. The architecture of this module is shown in Figure
5.

Atention N(O.0)  N(O0.6Y) N(O.0Y)

. x
Positive Bag l -

S -

Negative Bag * 'E 'g 'E -
Input

Cony Pooling Score Map MIL Pooling
Ladder Network

Figure 5: The network architecture of malware traffic detection module.

According to the idea of MIL, if there is at least one positive instance in a bag, which means
a pcap packet contains at least one piece of malicious traffic, then the bag is labeled as positive;
otherwise the pcap packet contains all normal traffic and the bag is marked as negative. The purpose
of MIL is to classify the instances contained in the bag by using the labeled bags as training data.
After classification of semi-supervised GAN, each small pcap packet is transformed into an image
X; which corresponds to a label ¥;. Each image X; = {x},xiz, ...,x{”},i =1,2,..., M is considered
to be a bag in MIL.

To improve the accuracy of fine-grained classification, we combine Convolutional Neural
Networks with Ladder Networks to form ConvLaddernet. We use the convolutional layer and
pooling layer of CNN to receive images that have been coarsely classified by the data annotation
module and output a feature map corresponding to the classification scores of different application
categories to form a score map. The Ladder Network is an L-layer encoder-decoder structure that
outputs two predictive labels, with the output label ¥ of the noisy encoder used to calculate the loss
function and the output label y of the noiseless encoder used for classification.
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According to the structure of the multiple-instance ConvLaddernet neural network, the distri-
bution probability of the classifier output prediction category can be calculated as Equation(5). wﬁ
is the weight between the / layer and [ — 1 of the Ladder Network, and hﬁ is the hidden variable of
the / layer of the noiseless encoder.

exp((wh)"hf)
Sigexp(w)Th)

Equation(6) to Equation(8) show the loss function of this module. The total loss function

p(§=yilx)) = (5)

as follows also consists of two components, the supervised loss, and the unsupervised loss. A;
represents the weight of each decoding layer’s loss function. zf. denotes the intermediate layer
output of the noiseless encoder, and zAf denotes the intermediate layer output which is reconstructed
by the decoder.

1 M R ;
Lsupervised = _M Zi:l 10g(P(y =i |x,])) (6)
_\E A Mo e
Lunsupervised = ZI:O M_ql Zi:l ||Zi - Zi” (7)
Ltotul = Lsupervised + Lunsupervised (8)

4. Experiment

4.1 Datasets

Considering that there are no publicly available traffic datasets that satisfy both the encryp-
tion and malicious conditions, we conduct experiments on two datasets respectively to verify the
effectiveness of the proposed method.

The dataset ISCX VPN-non VPN 2016, which contains twelve types of regular encrypted and
Virtual Private Network (VPN) encrypted traffic, is used to validate the performance of encrypted
traffic classification. The details of the ISCX dataset are listed in Table 1.

The dataset USTC-TFC2016, which contains twenty types of benign and malware traffic, is
used to validate the performance of malicious traffic identification. The details of the dataset are
listed in Table 2.

4.2 Experimental Setup

We use Python 3.6.5, TensorFlow 1.14.0 as software frameworks which run on Ubuntu 20.04
LTS OS. The Nvidia Corporation Tesla T4 GPU is used as the accelerator for computing. We use
the tools in sklearn 0.22 to evaluate our model.

We use four metrics to evaluate model performance: Accuracy, Precision, Recall, and F1-score.
Specific calculation methods are as Equation(9) to Equation(12). Where TP (True Positive) and
F P (False Positive) are the number of instances that were correctly and incorrectly determined to
be positive, and TN (True Negative) and FN (False Negative) are the number of instances that were
correctly and incorrectly determined to be negative respectively.

10
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Table 1: ISCX VPN-non VPN 2016

Dataset Encryption Type Traffic Type Application
ISCX VPN-non VPN 2016 | Regular encrypted traffic Chat Facebook, AIM, ICQ, Skype
Email Email, Gmail
File Transfer FTPS, Skype, SFTP, SCP
P2P Bittorrent
Streaming Netflix, Youtube, Vimeo, Spotify
VoIP Facebook, Hangouts, Voipbuster, Skype
VPN encrypted traffic VPN-Chat Facebook, AIM, ICQ, Skype
VPN-Email Email
VPN-File Transfer FTPS, Skype, SFTP
VPN-P2P Bittorrent
VPN-Streaming Netflix, Youtube, Vimeo, Spotify
VPN-VoIP Facebook, Hangouts, Voipbuster, Skype

Table 2: USTC-TFC2016

Dataset Traffic Type Application

BitTorrent, Facetime, FTP, Gmail, MySQL,
Outlook, Skype, SMB, Weibo, WorldOfWarcraft
Cridex, Geodo, Htbot, Miuref, Neris,

Nsis-ay, Shifu, Tinba, Virut, Zeus

USTC-TFC2016 Benign traffic

Malware traffic

TP+TN

Accuracy = &)
TP+ FP+FN+TN
TP

Precision = ———— (10)

TP+ FP

TP
Recall = ———— (1D
TP+ FN

F1— score = 2 - Precision - Recall (12)

Precision + Recall

4.3 Experiments of comprision

We designed three comparative experiments. The four methods for comparison are Multi-Layer

Perception (MLP), which is a representative of the classical machine learning method; Transfer

Learning [25], which is a semi-supervised learning method; our weakly-supervised method; and

CNN on behalf of supervised learning.

In experiment 1, one compares four metrics of the above methods: Accuracy, Precision, Recall,

and F1-score. These four metrics are commonly used for classification tasks in machine learning.

Table 3 shows the metric comparison results between the proposed model and other detection

methods.

11
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Our proposed method is optimal in three metrics Precision, Recall, and F1-score, representing
good predictive and generalization performance of the model. The next best performer on these
metrics is the CNN model, with the Transfer Learning and MLP being somewhat worse. As
for the metric of Accuracy, CNN is slightly higher than our proposed method, since supervised
learning requires more data and more accurate label information. The accuracy of the remaining
two algorithms is much lower. From the metrics of dataset USTC-TFC2016, it can be seen that
our method achieves an accuracy of 0.972, which is very close to the 0.979 of supervised CNN,
while the quality of data labels is less demanding. Overall, the dataset USTC-TFC2016 performs
better on various metrics than the dataset ISCX VPN-non VPN 2016, probably because the former
classifies traffic at the application level, but the latter only classifies it at traffic type.

Table 3: Expl. Metrics comparisons between the proposed model and other detection methods

Dataset Method Metrics

Accuracy | Precision ‘ Recall ‘ F1-score

ISCX VPN-non VPN 2016 MLP 0.706 0.77 0.75 0.76

Transfer Learning 0.845 0.83 0.71 0.77

Our Method 0.947 0.86 0.81 0.83

CNN 0.976 0.82 0.80 0.81

USTC-TFC2016 MLP 0.725 0.87 0.88 0.87

Transfer Learning 0.764 0.90 0.86 0.88

Our Method 0.972 0.95 0.93 0.94

CNN 0.979 0.92 0.89 0.91

In experiment 2, we want to study the effect of different percentages of labeled samples on the
accuracy of different methods. We design to test the accuracy of the proposed model and other
detection methods when the labeled samples account for 1%, 5%, 10%, 50% and 100% of the
training samples respectively. Figure 6 shows line graphs of the results of experiment 2.

As shown in Figure 6, the classification accuracy of MLP is significantly lower than that of the
remaining three neural network models, and the accuracy of Transfer Learning is also relatively low,
which is below 0.85. As we mentioned in Experiment 1, in the accuracy experiments with 100%
labeled samples, the CNN is more accurate. However, our method could also achieve relatively
high accuracy, especially in USTC-TFC2016, where the accuracy of the two is very close. In the
experiment with 50% labeled samples, there are highs and lows between our method and CNN.
While in experiments with 1%, 5% and 10% labeled samples, our method was significantly more
accurate than the other methods, and the accuracy rate can generally reach more than 0.90 on both
datasets. However, in experiments where the proportion of labeled samples was less than 10%,
the accuracy of the CNN begin to decrease gradually, falling below 0.90. It shows that our model
outperforms CNN at low percentage of labeled samples.

To further explore the performance of training with fewer percentage of labeled samples, we
designed an accuracy comparison experiment under 1% to 5% labeled samples, that is experiment
3. Figure 7 shows a visualisation of the results of the accuracy comparison between the proposed

12
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Figure 6: Accuracy comparison results of different label rates.

model and other detection methods.

T
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It can be seen that the accuracy of our method is significantly higher than the other three

methods when the label rate of samples is under 5%

. Our method could achieve approximately

0.90 accuracy on both datasets in the 1% labeled sample experiment, there are 0.898 and 0.906
respectively. When the proportion of labeled samples is more than 3%, the accuracy rate on
the dataset ISCX can reach more than 0.93, and that of the dataset USTC-TFC2016 even over
0.95. Whereas the other models are all below 0.90, and the accuracy decreases significantly as the
proportion of labeled samples decreases. It turns out that our model has better performance on a

small number of labeled samples.
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Figure 7: Accuracy comparison results of fewer label rates.

5. Conclusion

In this paper, we propose a weakly-supervised method that could extract features, select features
of encrypted network traffic, and classify encrypted network traffic automatically. Compared with

traditional malicious traffic classification countermeasures, the proposed detection method could

13
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achieve the fine-grained classification of encrypted malicious traffic with a small number of coarse-
grained labeled samples and a large number of unlabeled samples. And it has higher accuracy,
especially with a fewer labeled sample proportion.

We expect to deploy this approach on IHEPSOC later to improve its detection performance.
However, there are still so many problems in real traffic, such as traffic imbalance, real-time
detection, and cascading encrypted traffic, which may be the direction we want to explore in the
future.
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