
P
o
S
(
L
L
2
0
2
2
)
0
0
4

Differential N3LO QCD corrections to charged current
production at the LHC

Xuan Chen,𝑎,𝑏,∗ Thomas Gehrmann,𝑐 Nigel Glover,𝑑 Alexander Huss,𝑒

Tong-Zhi Yang𝑐 and Hua Xing Zhu 𝑓

𝑎Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
𝑏Institute for Astroparticle Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen,
Germany

𝑐Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
𝑑Institute for Particle Physics Phenomenology, Physics Department, Durham University, Durham, DH1
3LE, UK

𝑒Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
𝑓 Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, 310027,
China
E-mail: xuan.chen@kit.edu, thomas.gehrmann@uzh.ch,
e.w.n.glover@durham.ac.uk, alexander.huss@cern.ch, toyang@physik.uzh.ch,

zhuhx@zju.edu.cn
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recent measurement of the W boson mass by the CDF experiment displays a large deviation from
the Standard Model prediction. To enable precision phenomenology for this process, we compute
the third-order (N3LO) QCD corrections to the rapidity distribution in W boson production and
to the transverse mass distribution of its decay products. We study kinematic regions relevant for
the LHC experiments and assess the numerical magnitude of uncertainties from electroweak input
parameters and parton distribution functions.
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1. Introduction

Charged-current Drell-Yan production mediated by electroweak (EW) gauge bosons W± is
a fundamental process at hadron colliders [1]. Measurements of the inclusive and differential
properties of W boson production have been performed at the Large Hadron Collider (LHC) and
Fermilab Tevatron [2–9]. Electroweak parameters of the Standard Model (SM) such as the W boson
mass, decay width, weak mixing angle, and parton distribution functions (PDFs) in the proton can
be determined by precision measurements of charged-current Drell-Yan production. Recently a
study by the CDF collaboration using a sample of approximately 4 million W bosons collected at
the Tevatron reports the W boson mass 𝑀𝑊 = 80433.5 ± 9.4 MeV [10]. The result deviates by 7
standard deviations from the SM electroweak precision fit of 𝑀𝑊 = 80357±6 MeV [11, 12], which
is itself in good agreement of measurements by ATLAS [4] and LHCb [5] as well as the previous
CDF result [2]. Direct measurements of the W boson mass have limited resolution due to missing
energy of the neutrino in the final state charged lepton-neutrino system. Precise measurements
of 𝑀𝑊 are thus based on template fits to differential observables. Both the CDF [2, 10] and
ATLAS [4] analyses include distributions of final state charged lepton transverse momentum and
transverse mass of the lepton-neutrino system as fitting observables. The measured distributions
are compared with theory predictions with various input values. The 𝑀𝑊 parameter that achieves
the best fit corresponds to the measured central value of W boson mass. The uncertainty associated
with the measurement is a combination of statistic and systematic errors from both experimental
analysis and theory predictions.

The accuracy of theory predictions in charged current Drell-Yan production directly impact
measurements of the SM electroweak parameters. Rapid progress has been achieved in perturbative
QCD with next-to-leading order (NLO, [13]) and next-to-next-to-leading order (NNLO, [14]) cor-
rections available for a while. Fully differential NNLO QCD corrections [15–18] are routinely used
in the experimental analysis of Drell-Yan production. The third order (N3LO) corrections in QCD
were accomplished recently for inclusive cross sections [19] and for differential predictions [20].
QCD resummation of large logarithmic corrections has been combined with fixed order predic-
tions [21–23] with up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [24–26].
These QCD corrections for the charged current Drell-Yan process combine with NLO EW [27–29]
and mixed QCD-EW corrections [30–34] to achieve theory predictions at high quantitative accru-
acy. Impact from the parton distribution functions (PDFs) on 𝑀𝑊 determinations has been studied
with NLO QCD plus parton shower corrections [35–38] or scaled to NNLO precision [39, 40].

In this study, we focus on the rapidity distribution of W boson production and the transverse
mass distribution of its decay products, which we newly compute to N3LO in QCD. We identify
characteristic changes at NNLO QCD accuracy in differential distributions caused by shifting EW
input parameters such as 𝑀𝑊 and Γ𝑊 , implementing an alternative Breit-Wigner parametrisation
between fixed and running decay width, and switching between choices of modern PDFs. We further
compare the uncertainties from above analysis at NNLO to N3LO predictions in [20]. This work
provides guidance for the estimation of theoretical uncertainties in future precision measurements
of SM parameters associated with charged-current Drell-Yan production.
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2. Implementation

Our prediction of the perturbative QCD corrections of charged-current Drell-Yan production up
to NNLO is provided by the parton level event generator NNLOJET, which implements the antenna
subtraction method [41–43]. The state-of-the-art differential N3LO correction is achieved through
an established framework [20, 44–46] using the 𝑞𝑇 -subtraction formalism [47]. It requires the
combination of numerically robust NNLO Drell-Yan-plus-jet production evaluated at low transverse
momentum cut-off [48, 49] with unresolved N3LO contributions including logarithmic divergent
terms [50–56] predicted via Soft-Collinear Effective Theory (SCET) [57–61].

Our calculation for the charged-current Drell-Yan production is performed for LHC kinematics
with center-of-mass energy at 13 TeV. The default EW parameters are based on the 𝐺𝜇 scheme
with 𝑀Z = 91.1876 GeV, ΓZ = 2.4952 GeV, 𝐺𝐹 = 1.1663787 × 10−5 GeV−2 [12]. The CKM
matrix is considered to be diagonal. For each perturbative QCD order, we apply the same PDFs
with 𝛼𝑠 (𝑀Z) = 0.118. The central renormalisation (𝜇𝑅) and factorisation (𝜇𝐹) scales are chosen
to be the invariant mass of final state Drell-Yan pair, 𝜇𝐹 = 𝜇𝑅 = 𝑚ℓ𝜈 . To estimate theoretical
uncertainties, we adopt the 7-point scale variation of 𝜇𝐹 and 𝜇𝑅 by a factor of two while enforcing
1/2 ≤ 𝜇𝐹/𝜇𝑅 ≤ 2.

We compare normalized differential observables computed from the central member of four
sets of NNLO PDFs: NNPDF3.1 [62], NNPDF4.0 [63], CT18 [64] and PDF2LHC21 [65]. To
describe the decay of the W boson into a charged lepton and a neutrino, we implement leading
order decay matrix element with a Breit-Wigner parametrisation of the W propagator. We use
𝑀W = 80.379 GeV and ΓW = 2.085 GeV reported by the Particle Data Group (PDG, [12]) as the
default setup. No fiducial selection criteria is applied on the final state leptons. Two types of
Breit-Wigner parametrisation are applied in this work. The default setup adopts the fixed-width
parametrisation

BW(𝑞2) = − 𝑖

𝑞2 − 𝑀2
𝑊

+ 𝑖𝑀𝑊Γ𝑊
, (1)

while measurements of gauge-boson masses are usually determined with a running width parametri-
sation

BW(𝑞2) = − 𝑖

𝑞2 − 𝑀2
𝑊

+ 𝑖𝑞2Γ𝑊/𝑀𝑊

, (2)

where 𝑞2 is the invariant mass of final state Drell-Yan pair. We present comparisons of the default
setup, running width (label ‘running Γ𝑊 ’) and fixed width (label ‘fixed Γ𝑊 ’) where 𝑀𝑊 and Γ𝑊

are transformed from on-shell to pole mass scheme according to [66].

3. Results

We illustrate the impact of four modern PDFs on the W boson rapidity and transverse mass
distributions in Fig. 1 and 2. The rapidity distributions of the Drell-Yan pairs from W+ and W−

decays are normalized by the corresponding total cross section in Fig. 1. Fixed order contributions
with up to N3LO accuracy are illustrated with NNPDF3.1 PDFs. NNLO predictions with three
additional PDFs (CT18, NNPDF4.0 and PDF4LHC21) are included for comparison. The bottom
panels shows their ratio with respect to the central NNLO result from NNPDF3.1. The coloured
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Figure 1: W boson rapidity distributions with NLO to N3LO QCD corrections. The NNLO corrections
are calculated with four sets of PDFs. The coloured bands represent theory uncertainties from 7-point scale
variation. The bottom panels show the ratio with respect to NNLO with NNPDF3.1 PDFs.
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Figure 2: W boson transverse mass distribution with NLO to N3LO QCD corrections. The NNLO corrections
are calculated with four sets of PDFs. The coloured bands represent theory uncertainties from 7-point scale
variation. The bottom panel is the ratio with respect to NNLO for NNPDF3.1 PDFs.

bands represent theory uncertainties from the 7-point scale variation and the error bars indicate
the numerical integration error at N3LO. We observe a relatively large impact on the shape of
distributions from the choice of PDFs, well outside scale variation bands. For𝑊+, the central rapidity
region displays about −1.5% (−0.7%) deviation between CT18 (PDF4LHC21) and NNPDF3.1
PDFs, which gradually increases to +2.7% (+1.4%) towards the forward region. The impact of
different PDF choices is stronger for𝑊−. The central rapidity region shows about −2.3% (−1.1%)
deviation between CT18 (PDF4LHC21) and NNPDF3.1 PDFs, which increases to +2.5% (+1.5%)
towards the forward region. Higher order QCD corrections at NNLO and N3LO only provide small
changes to the shape of rapidity distributions of less than ±0.5% throughout the plotted region.
We notice that NNPDF3.1 and NNPDF4.0 PDFs predictions for the normalized distributions agree
within ±0.5%.
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Figure 3: Normalized W transverse mass distribution with NLO to NNLO corrections (top panel), with
different 𝑀W values from PDG, CDFII and L3 (middle panel) and with different ΓW with PDG central value
and ± 1𝜎 uncertainties (bottom panel). All distributions are compared to the NNLO result with running
decay width and PDG central values. Positive (negative) charged current results are in the left (right) panels.
The colored bands represent theory uncertainties from 7-point scale variation.

In Fig. 2 we present the normalized transverse mass distributions of charged current decay
products. We observe similar higher order QCD corrections between 𝑊+ and 𝑊− both having the
dominant change to the shape of distributions from NLO to NNLO with about +1.6% around 40
GeV and −1% around the 𝑀𝑊 threshold. Different choices of PDFs are consistent within numerical
error at NNLO accuracy through out the plotted transverse mass region. A small negative shift
about −0.4% caused by CT18 and PDF4LHC21 with respect to NNPDF3.1 (also NNPDF4.0) PDFs
appears at 𝑚𝑊

𝑇
around 100 GeV where NNLO predictions from all four PDFs are still consistent

within scale uncertainty band. The N3LO QCD correction (in left panel of Fig. 2) agree well with
NNLO predictions from various PDFs choices in the bulk of the distribution. It starts to have a
minimum overlap in scale variation band from NNLO for 𝑚𝑊

𝑇
below 15 GeV.

We illustrate in Fig. 3 the impact of changes to the EW input parameters on the transverse mass
distributions of charged current Drell-Yan production. Instead of the default setup, here we apply
the Breit-Wigner parametrisation with running decay width described in eq. (2). Comparing the
top panels of Fig. 3 to the bottom panels of Fig. 2, we find excellent agreement between the two
Breit-Wigner parametrisations. We also confirm by comparing NNLO results between running Γ𝑊

(in blue) and fixed Γ𝑊 (in red) in the top-left panel of Fig. 3 that the two parametrisations can be
transformed from one to the other according to [66]. In the middle panels of Fig. 3, we alter the 𝑀𝑊

on-shell mass input value from the SM electroweak fit of 𝑀𝑊 = 80.379 GeV to the measured results
recently reported by CDFII at 80.433 GeV [10] and to the L3 result of 80.27 GeV [67]. The weak
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mixing angle sin2𝜃𝑊 is a derived value in our calculation, which at tree-level is (1 − (𝑀𝑊/𝑀𝑍 )2).
The comparison aims to quantify the relative impact of input 𝑀𝑊 values larger or smaller than
the SM electroweak fit benchmark at NNLO QCD accuracy. Below 60 GeV, the three chosen 𝑀𝑊

input values yield mutually consistent results for the normalised transverse mass distribution. We
observe a strong input parameter sensitivity at the peak of the distribution around 𝑀𝑊 . Below the
𝑀𝑊 threshold, the distribution for the CDFII value is about 0.5% smaller than the electroweak fit
benchmark and is about 3.5% larger right beyond the threshold. This difference gradually reduce
towards 100 GeV at about 0.7%. The largest deviation between the two distributions reaches about
14 times the scale variation uncertainty. We observe a large and negative shift beyond the threshold
for the L3 input parameter, amounting to 7% which is about twice the difference obtained for the
CDFII input parameter. In the bottom panels of Fig. 3, we alter the Γ𝑊 decay width input value
within the PDG uncertainty of±42 MeV. The impact to the normalised transverse mass distributions
is minimal below 75 GeV and is stabilised at ±2% beyond the threshold compared to the benchmark
distribution from the central PDG value. The resulting ±2% deviation corresponds to about ±9 𝜎
of the scale variation uncertainty. Fig. 3 also demonstrates that the differences between fixed-width
and running-width schemes are minimal.

4. Conclusions

In this talk, we have presented predictions for normalised differential distributions in the
charged current Drell-Yan production up to third order in perturbative QCD. We supplement our
work in [20] to quantify the impact of PDF variations and electroweak input parameter schemes
on the rapidity and transverse mass distributions in the charged current Drell-Yan process. We find
nontrivial modifications to the shape of the normalised rapidity distributions at the level of ±2.5%
in central and forward regions due to different choices of modern PDFs. Their impact is much larger
than that of the N3LO QCD contributions. We compare transverse mass distributions with relative
changes in the input EW parameters with both running and fixed width parametrisation. Excellent
agreement is observed around and beyond the 𝑀𝑊 threshold between the two parametrisations. The
shape of the transverse mass distribution is very sensitive to the input values of 𝑀𝑊 and Γ𝑊 . We
identify regions of the transverse mass distribution where the sensitivity on 𝑀𝑊 and Γ𝑊 is largest,
exceeding by far the uncertainty from missing higher order contributions on the theory predictions.
Our findings provide the theory input to future precision measurements of SM parameters associated
with charged-current Drell-Yan production.
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