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1. Introduction

Current and future precision LHC measurements require theoretical predictions of equal preci-
sion, in order to fully exploit the discovery potential of the machine [1–3]. When considering QCD
corrections for 2 → 2 scattering processes which are relevant for LHC phenomenology, these are
well under control at the Next-to-Next-to-Leading-Order (NNLO) in perturbation theory [4].

It is estimated however, that percent level precision of theoretical predictions for LHC observ-
ables will be required, which makes it necessary to push our understanding of perturbative QCD
to N3LO [5]. One key aspect of these precision calculations, is our ability to compute multiloop
Feynman integrals, which for N3LO corrections are typically at the level of three loops.

Currently, the most successful method for the computation of multiloop Feynman integrals
is the method of differential equations [6–9]. For a given process, one identifies one or several
so-called integral families. For each family a minimal set of Feynman integrals, often called master
integrals (MI), is identified using Integration-By-Parts (IBP) identities [10, 11]. One then proceeds
by deriving differential equations for these master integrals with respect to kinematic invariants
and, if present, internal masses. The result of the differentiation is then written in terms of MI of
the same integral family. The final ingredient is the determination of appropriate boundary terms
for the solution of the differential equations.

In recent years, important results have been obtained through the use of the so-called canonical
differential equations [12]. The important observation is that by carefully choosing a so-called
canonical, or pure [13], basis of MI, the differential equation that they will satisfy will have only
logarithmic singularities and the dependence of the dimensional regulator will be factored out. The
mathematical simplicity of this kind of differential equations allows us, usually in cases involving
few kinematic scales, to directly express their solution in terms of a well-studied class of special
functions known us Multiple or Goncharov Polylogarithms (GPLs) [14–16]. In the simplest cases,
these GPLs will have as arguments rational functions of the kinematic variables, while in more
complicated ones, they can also include algebraic functions of the kinematics. Finally, it has been
established that GPLs are not enough to span the space of functions that are needed to describe all
relevant multiloop Feynman integrals, leading to several studies of a new class of functions called
Elliptic integrals [17].

Concerning three-loop MI for 2 → 2 scattering, all MI involving four massless external particles
have been recently computed in terms of GPLs [18, 19]. Regarding processes that involve up to one
massive external particle, a planar family of MI associated to the so-called ladder topology, depicted
in figure 1, was computed in [20, 21]. In these proceedings we report on a recent computation
involving the remaining planar topologies [22], known as tennis-courts and depicted in figure 1.

For our calculation, we constructed canonical bases for the two planar families of MI and
employed a variant of the method of differential equations, known as the Simplified Differential
Equations (SDE) approach [23], to analytically compute them in terms of GPLs. We used the
method of Expansion-by-Regions [24] to obtain all relevant boundary terms and then we analytically
continued our solutions to physical regions of phase space using well-known properties of GPLs.

The remaining of this contribution is structured as follows. In section 2, we define the integral
families under consideration and their kinematics. In section 3, we describe the main steps of the
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calculation and the validation of our results. We conclude in section 4. For more details, we refer
the interested reader to [22].

2. Integral families

q4q1

q2 q3

q2 q1

q3 q4

q1 q4

q2 q3

Figure 1: The F1 (top), F2 (bottom left) and F3 (bottom right) top-sector diagrams. The double line
represents the massive particle and all external momenta are taken to be incoming.

We consider the calculation of families F2 and F3, whose top sector diagram can be seen in
figure 1. Their integral representation is defined as follows1:

𝐺𝐹2
𝑎1 · · ·𝑎15

:=
∫ ( 3∏

𝑙=1
𝑒𝛾𝐸 𝜖 𝑑

𝑑𝑘𝑙

𝑖𝜋𝑑/2

) (𝑘1 + 𝑞123) −2𝑎11 𝑘
−2𝑎12
2

(𝑘1 + 𝑞12) 2𝑎1 (𝑘2 + 𝑞12) 2𝑎2 (𝑘2 + 𝑞123) 2𝑎3

× (𝑘2 + 𝑞1) −2𝑎13 (𝑘3 + 𝑞1) −2𝑎14 (𝑘3 + 𝑞12) −2𝑎15

(𝑘3 + 𝑞123) 2𝑎4 𝑘
2𝑎5
3 𝑘

2𝑎6
1 (𝑘1 + 𝑞1) 2𝑎7 (𝑘1 − 𝑘2) 2𝑎8 (𝑘1 − 𝑘3) 2𝑎9 (𝑘3 − 𝑘2) 2𝑎10

(1)

𝐺𝐹3
𝑎1 · · ·𝑎15

:=
∫ ( 3∏

𝑙=1
𝑒𝛾𝐸 𝜖 𝑑

𝑑𝑘𝑙

𝑖𝜋𝑑/2

) (𝑘1 + 𝑞12) −2𝑎11 𝑘
−2𝑎12
2

(𝑘1 + 𝑞1) 2𝑎1 (𝑘2 + 𝑞1) 2𝑎2 (𝑘2 + 𝑞12) 2𝑎3 (𝑘3 + 𝑞12) 2𝑎4

×
(𝑘2 + 𝑞123) −2𝑎13 𝑘

−2𝑎14
3 (𝑘3 + 𝑞1) −2𝑎15

(𝑘3 + 𝑞123) 2𝑎5 (𝑘1 + 𝑞123) 2𝑎6 𝑘
2𝑎7
1 (𝑘1 − 𝑘2) 2𝑎8 (𝑘1 − 𝑘3) 2𝑎9 (𝑘3 − 𝑘2) 2𝑎10

(2)

with 𝑎𝑖 being integers and 𝑎𝑖 ≤ 0 for 𝑖 = 11, . . . , 15. The external momenta of the considered
families obey the following kinematics:

∑4
𝑖=1 𝑞𝑖 = 0, 𝑞2

2 = 𝑚2, 𝑞2
𝑖
= 0 for 𝑖 = 1, 3, 4 and

𝑆12 = (𝑞1 + 𝑞2)2, 𝑆23 = (𝑞2 + 𝑞3)2, 𝑆13 = 𝑚2 − 𝑆12 − 𝑆23. When considering 2 → 2 processes with

1Where we use the abbreviation 𝑞12 = 𝑞1 + 𝑞2 and 𝑞123 = 𝑞1 + 𝑞2 + 𝑞3.
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one massive particle, we may identify four relevant phase space regions, one unphysical, Euclidean,
region and 3 physical regions. These are,

Euclidean : 𝑚2 < 0, 𝑆12 < 0, 𝑆23 < 0 (3)
s-channel : 𝑚2 > 0, 𝑆12 ≥ 𝑚2, 𝑆23 ≤ 0, 𝑆13 ≤ 0 (4)
t-channel : 𝑚2 > 0, 𝑆12 ≤ 0, 𝑆23 ≥ 𝑚2, 𝑆13 ≤ 0 (5)
u-channel : 𝑚2 > 0, 𝑆12 ≤ 0, 𝑆23 ≤ 0, 𝑆13 ≥ 𝑚2. (6)

Using automated IBP tools such as Kira2 [25] and FIRE6 [26] we identified 117 MI for family
F2 and 166 MI for family F3.

3. Calculation

The first step of our calculation is to construct canonical bases for the two integral families under
consideration. To do so, we relied on several different methods that allowed us to obtain canonical
candidates. For several low sectors, involving up to seven propagators, we used the approach based
on Magnus series expansions [27], which was already successfully applied for the construction
of a pure basis for family F1 in [20]. For higher sectors, involving up to nine propagators, we
used the Mathematica package DlogBasis [19] to identify appropriate candidates as pure basis
elements. The last but most extensively used approach is a heuristic method based on [28], working
loop-by-loop and using already known one, two- and three-loop pure basis elements [20, 29, 30].

The ultimate test that a canonical basis has been obtained is whether it satisfies a canonical
DE. In this work we employed the SDE approach. More specifically, we parametrise the external
momenta by introducing a dimensionless parameter 𝑥 in the following manner

𝑞1 = 𝑥𝑝1, 𝑞2 = 𝑝1 + 𝑝2 − 𝑥𝑝1, 𝑞3 = 𝑝3, 𝑞4 = 𝑝4 (7)

where the new momenta 𝑝𝑖 are all massless. This parametrisation produces the following mapping
for the kinematic invariants between the two momentum configurations

𝑆12 = 𝑠12, 𝑆23 = 𝑠23𝑥, 𝑚2 = 𝑠12(1 − 𝑥) (8)

with 𝑠12 = (𝑝1 + 𝑝2)2, 𝑠23 = (𝑝2 + 𝑝3)2. Since we will use the SDE approach for the solution of (1)
and (2), we would like to have the corresponding limits for each region of phase-space expressed in
terms of the 𝑥, 𝑠12, 𝑠23 variables. The mapping of (8) allows us to do so, although for reasons that
will become clear at a later stage, we define the ratio 𝑦 =

𝑠23
𝑠12

and use the variables 𝑥, 𝑦, 𝑠12. Our
approach therefore will be to compute all MI in terms of real-valued GPLs in the Euclidean region

0 < 𝑥 < 1, 𝑠12 < 0, 0 < 𝑦 < 1 (9)

and then, using tools such as HyperInt[31] and PolyLogTools[32], analytically continue our
solutions in the physical regions

s-channel : 0 < 𝑥 < 1, 𝑠12 > 0, −1 ≤ 𝑦 ≤ 0 (10)
t-channel : 1 < 𝑥, 𝑠12 < 0, 𝑦 ≤ −1 (11)
u-channel : 1 < 𝑥, 𝑠12 < 0, 𝑦 ≥ 0. (12)
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Having introduced the SDE parametrisation (7), the MI are now dependent on 𝑥 through the
external momenta. By differentiating with respect to 𝑥 we were able to obtain the following SDE
in canonical form for families F2 and F3,

𝜕𝑥g = 𝜖

( 4∑︁
𝑖=1

M𝑖

𝑥 − 𝑙𝑖

)
g (13)

where g is the pure basis and M𝑖 are the residue matrices corresponding to each pole 𝑙𝑖 . All
kinematic dependence is included in the poles 𝑙𝑖 , leaving the matrices M𝑖 to consist solely of
rational numbers. We have found an alphabet consisting of the four following letters{

𝑥, 𝑥 − 1, 𝑥 − 1
1 + 𝑦

, 𝑥 + 1
𝑦

}
. (14)

It is interesting to note here that the same letters were found in the case of the family F1 [21]. The
form of (13) allows us to write down a general solution in terms of GPLs:

g = 𝜖0b(0)
0 + 𝜖

(∑︁
G𝑖M𝑖b

(0)
0 + b(1)

0

)
+ 𝜖2

(∑︁
G𝑖 𝑗M𝑖M 𝑗b

(0)
0 +

∑︁
G𝑖M𝑖b

(1)
0 + b(2)

0

)
+ . . .

+ 𝜖6
(
b(6)

0 +
∑︁

G𝑖 𝑗𝑘𝑙𝑚𝑛M𝑖M 𝑗M𝑘M𝑙M𝑚M𝑛b(0)
0 +

∑︁
G𝑖 𝑗𝑘𝑙𝑚M𝑖M 𝑗M𝑘M𝑙M𝑚b(1)

0

+
∑︁

G𝑖 𝑗𝑘𝑙M𝑖M 𝑗M𝑘M𝑙b
(2)
0 +

∑︁
G𝑖 𝑗𝑘M𝑖M 𝑗M𝑘b(3)

0 +
∑︁

G𝑖 𝑗M𝑖M 𝑗b
(4)
0 +

∑︁
G𝑖M𝑖b

(5)
0

) (15)

where G𝑎𝑏... := G(𝑙𝑎, 𝑙𝑏, . . . ; 𝑥) represent the GPLs. The b(𝑖)
0 terms represent the boundary terms

that need to be determined, with 𝑖 indicating the corresponding weight, and consist of Zeta functions
Z (𝑖) and logarithms {log(−𝑠12), log(𝑦)} of weight 𝑖. Our results are presented in such a way that
each coefficient of 𝜖 𝑖 has transcendental weight 𝑖. If we assign weight −1 to 𝜖 , then (15) has
uniform weight zero. We consider results up to weight six, which is the usual practise for three-loop
computations.

In order to determine the necessary boundary terms b(𝑖)
0 in (15) we will employ techniques

developed in [21, 33], which rely on exploiting information from the canonical DE itself, as well as
using the method of Expansion-by-Regions. We are interested in taking the limit 𝑥 → 0 limit as a
boundary condition. The master equation that allows us in principle to compute all boundary terms
can be written as

Rb = lim
𝑥→0

TG
����
O

(
𝑥

0+𝑎𝑗 𝜖
) (16)

where on the left-hand-side we have information on the 𝑥 → 0 limit coming from the canonical
DE (13) through the definition of the resummation matrix R = Se𝜖D log(𝑥)S−1, with M1 = SDS−1.
The right-hand-side of (16) comes from IBP reducing the canonical basis for each family in terms
of individual Feynman integrals, g = TG, and then using Expansion-by-Regions in order to obtain
their asymptotic behaviour at 𝑥 → 0, 𝐺𝑖 =

𝑥→0

∑
𝑗

𝑥𝑏 𝑗+𝑎 𝑗 𝜖𝐺
(𝑏 𝑗+𝑎 𝑗 𝜖 )
𝑖

. Finally, apart from the terms

𝑥𝑎𝑖 𝜖 , we expand around 𝑥 = 0, keeping only terms of order 𝑥0.
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The above approach allows us to determine all top-sector boundaries in terms of lower-sector
ones. For family F3 for example we have for boundary term 𝑏166,

𝑏166 = − 1531𝑏1
4752

− 128𝑏2
297

+ 47𝑏4
33

− 1891𝑏5
396

+ 74𝑏10
9

+ 20𝑏11
3

+ 7𝑏12
3

− 127𝑏13
36

− 415𝑏15
264

+ 13𝑏16
8

+ 10𝑏17
3

− 47𝑏18
36

− 2𝑏19 + 5𝑏20
6

− 21𝑏22
16

− 11𝑏23
6

+ 5𝑏24
12

− 35𝑏25
132

− 6𝑏26
11

+ 16𝑏29
3

+ 32𝑏30
9

− 10𝑏31
3

+ 581𝑏35
132

+ 29𝑏36
18

− 197𝑏38
33

+ 3𝑏43
2

− 14𝑏49
3

+ 7𝑏52 − 5𝑏53 − 89𝑏54
12

+ 13𝑏57
3

− 8𝑏60
3

− 𝑏61
6

+ 2𝑏62 − 7𝑏77
33

− 𝑏81
6

+ 3𝑏83 − 𝑏84
2

− 13𝑏87
6

+ 7𝑏88
12

− 2𝑏89
3

+ 5𝑏97
6

− 𝑏108
3

− 2𝑏123
3

− 𝑏130

+ 2𝑏137
3

+ 2𝑏144 − 4𝑏152
3

− 2𝑏159
3

.

We can fix in a similar manner 109 boundary terms for family F3. The remaining boundary terms,
assuming that we have already solved families F1 and F2, are{

𝑏108, 𝑏123, 𝑏135, 𝑏144, 𝑏157, 𝑏159
}
. (17)

Boundary term 𝑏108 can be obtained from (16)

𝑏108 = − 2𝑏19 +
3𝑏21

4
+ 𝑠2

12𝜖
5𝐺

(−2𝜖 )
111101012000000

+ 4𝑠12𝜖
4𝐺

(−𝜖 )
1022010110−10000 − 3𝑠2

12𝜖
4𝐺

(−𝜖 )
112201001000000

+ 6𝑠12𝜖
5𝐺

(0)
011101012000000 (18)

through the direct integration of region integrals in the Feynman parameter representation appearing
in (18). In this particular case, we have to consider integrals with up to seven Feynman parameters.
This is in general a non-trivial task to perform, although in this particular case we were able to
compute 𝑏108 fully analytically.

For the remaining five boundary terms,
{
𝑏123, 𝑏135, 𝑏144, 𝑏157, 𝑏159

}
, if we were to continue

with direct integration over Feynman parameters, we would have to consider integrals with up to
nine parameters. This is a highly non-trivial computation in general and we found it inefficient for
the determination of the remaining boundary terms. To move forward, we exploited the 𝑥 → 1
limit of our integral families as well as their solution, which going back to (7), yields the massless
limit of the corresponding integral families. More specifically, the remaining boundaries can be
determined by the following procedure

1. Construct solution using ansatz for the undetermined boundary terms, i.e. 𝑏𝑖 =
∑6

𝑘=0 𝑎(𝑖, 𝑘)𝜖 𝑘 .

2. Take 𝑥 → 1 limit of the solution: g̃ = R̃0 g𝑟𝑒𝑔 |𝑥=1 [21].

3. Map the 𝑥 → 1 limit of F3, i.e. the massless tennis-court, to the known solution of the same
family from cite.

Having all necessary boundary terms at hand, we now present our results by showcasing the
structure of the GPL functions that appear in our final solution for each region of phase space, as
well as the number of GPL functions with specific transcendental weight. Through the analytic
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Regions Indices Argument Indices Argument
Euclidean {0, 1,−1/𝑦, 1/(1 + 𝑦)} 𝑥 − −
s-channel {0, 1,−1/𝑦, 1/(1 + 𝑦)} 𝑥 − −
t-channel {0, 1,−𝑦, 1 + 𝑦} 1/𝑥 {0, 1} −1/𝑦
u-channel {0, 1,−𝑦, 1 + 𝑦} 1/𝑥 {0,−1} 𝑦

Table 1: Structure of GPLs appearing in each of the 4 kinematic regions.

R 𝑊 = 1 𝑊 = 2 𝑊 = 3 𝑊 = 4 𝑊 = 5 𝑊 = 6 Total Timings (sec)
E 4 14 50 124 367 734 1293 39.0225769
s 4 14 50 124 367 734 1293 39.2172529
t 6 18 58 155 419 603 1259 62.0567800
u 5 16 54 147 403 572 1197 55.1049640

Table 2: Number of GPLs per weight and region, and timings for the numerical evaluation of the total GPLs.

continuation of our results, using packages such as HyperInt and PolyLogTools, we obtain
expressions in all physical regions of phase space involving real-valued GPLs, which makes their
numerical computation through GiNaC fast and stable.

The timings appearing in table 2 where obtained for the following points

Euclidean : 𝑠12 → −7, 𝑦 → 3/7, 𝑥 → 1/4
s-channel : 𝑠12 → 2, 𝑦 → −1/2, 𝑥 → 1/4
t-channel : 𝑠12 → −2, 𝑦 → −3/2, 𝑥 → 5/3
u-channel : 𝑠12 → −2, 𝑦 → 3/2, 𝑥 → 5/3.

For the same points we cross-checked our results against numerical results from FIESTA4 [34] and
pySecDec [35] and found excellent agreement. We also performed analytic checks at the limit
𝑥 → 1 against the results of [18] in the Euclidean region.

4. Conclusions

In these proceedings we reported on the recent calculation of the remaining three-loop planar
topologies, known as tennis court topologies, for 2 → 2 scattering involving three massless and one
massive external particle [22]. Our results are expressed in terms of real-valued GPLs for all physical
regions of phase-space, which allows one to obtain fast and stable numerical evaluations for all MI.
This is of key importance when considering the application of these solutions to phenomenological
studies of scattering processes at particle colliders.
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