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Taming a resurgent ultra-violet renormalon David Broadhurst

1. Dyson-Schwinger equation and asymptotic expansion

Consider the perturbation expansion generated by the iteration of a single divergent diagram,
via the non-linear Dyson-Schwinger equation [1–4],

= + + + · · ·

contributing to the self-energy term Σ in the inverse propagator 𝑞2(1 − Σ), for a massless scalar
particle with a 𝜙3 interaction, in the critical space-time dimension 𝐷 = 6, for which the coupling
constant is dimensionless.

The dependence of Σ on the external momentum 𝑞 comes solely from renormalization. At 𝑛
loops, we get a contribution that is a polynomial of degree 𝑛 in log(𝑞2/𝜇2), multiplied by 𝑎𝑛 where
𝑎 = 𝜆2/(4𝜋)3, 𝜆 is the coupling constant and 𝜇 is the renormalization scale.

If we use momentum-space subtraction, so that Σ vanishes at 𝑞2 = 𝜇2, the dependence on
momentum is completely determined by the anomalous dimension, with

𝛾(𝑎) = − 𝑞2 dΣ
d𝑞2

����
𝑞2=𝜇2

giving
d log(1 − Σ)

d log 𝑞2

����
𝑞2=𝜇2

= 𝛾

(
𝑎

(1 − Σ)2

)
. (1)

The number of distinct diagrams at 𝑛 loops is the number 𝑇𝑛 of rooted trees with 𝑛 nodes,
which gives the sequence [5],

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, . . .

up to 16 loops. The iterated structure: tree = root + branches, with every branch being itself a tree,
gives the asymptotic growth

𝑇𝑛 =
𝑏

𝑛3/2 𝑐
𝑛 (1 +𝑂 (1/𝑛)) (2)

𝑏 = 0.43992401257102530404090339143454476479808540794011 . . . (3)
𝑐 = 2.95576528565199497471481752412319458837549230466359 . . . (4)

At 250 loops, the number of Feynman diagrams is

T_250=517763755754613310897899496398412372256908589980657316

271041790137801884375338813698141647334732891545098109934676.

This is not the main source of the problem. If the contribution of each diagram was bounded,
there would be a finite radius of convergence for the perturbation expansion. The divergence of the
series comes from renormalization, which makes the 𝑛-loop term grow factorially. This is called a
renormalon singularity [6].

At 4 loops, we have a rainbow, a chain and two more interesting diagrams:

(5)
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The sum of rainbows converges. Chains can be summed by Borel transformation [1].

𝛾rainbow =
3 −

√︁
5 + 4

√
1 + 𝑎

2
= −𝑎

6
+ 11

𝑎2

63 − 206
𝑎3

65 + 4711
𝑎4

67 +𝑂 (𝑎5) (6)

𝛾chain = −
∫ ∞

0

6 exp(−6𝑧/𝑎)d𝑧
(𝑧 + 1) (𝑧 + 2) (𝑧 + 3) = −𝑎

6
+ 11

𝑎2

63 − 170
𝑎3

65 + 3450
𝑎4

67 +𝑂 (𝑎5) (7)

𝛾 =
∑︁
𝑛>0

𝐺𝑛

(−𝑎)𝑛
62𝑛−1 = −𝑎

6
+ 11

𝑎2

63 − 376
𝑎3

65 + 20241
𝑎4

67 +𝑂 (𝑎5) (8)

with large integers 𝐺𝑛 in the alternating asymptotic series for 𝛾. Note that 𝐺4 = 20241 >

4711 + 3450, because of two further diagrams in (5). In one we have a chain inside a double
rainbow. In the other, a double rainbow is chained with the primitive divergence. This interplay is
coded by rooted trees.

At 500 loops, the integer coefficient 𝐺500 has 1675 decimal digits. It was determined in work
of the second author with Dirk Kreimer that resulted in a third-order differential equation [2],

8𝑎3𝛾
{
𝛾2𝛾′′′ + 4𝛾𝛾′𝛾′′ + (𝛾′)3} + 4𝑎2𝛾

{
2𝛾(𝛾 − 3)𝛾′′ + (𝛾 − 6) (𝛾′)2}

+ 2𝑎𝛾(2𝛾2 + 6𝛾 + 11)𝛾′ − 𝛾(𝛾 + 1) (𝛾 + 2) (𝛾 + 3) = 𝑎 (9)

with quartic non-linearity.
Interest in this problem came from Kreimer’s discovery of the Hopf algebra of the iterated

subtraction of subdivergences [7], whose utility was illustrated in this example, with a single
primitive divergence leading to undecorated rooted trees.

The corresponding diagrams in Yukawa theory, in its critical dimension 𝐷 = 4, give a first-
order equation with merely quadratic non-linearity, which was solved using the complementary
error function [2], thereby achieving explicit all-orders results for both the anomalous dimension
and the self-energy. The expansion coefficients in this simpler case enumerate connected chord
diagrams and an all-order resurgence analysis is possible [8].

The 𝐷 = 4 and 𝐷 = 6 examples were also investigated in the more cumbersome minimal
subtraction scheme, where one retains finite parts of Σ at 𝑞2 = 𝜇2. Here one encounters unwieldy
products of zeta values with weights that increase linearly with the loop-number. Recently, Paul-
Hermann Balduf has shown how to absorb these into a rescaling of 𝜇 that can be expanded in the
coupling 𝑎 [9].

2. Padé-Borel summation with alternating signs

Broadhurst and Kreimer resummed the factorially divergent alternating series by an Ansatz [1]

𝛾(𝑎) = − 𝑎

6Γ(𝛽)

∫ ∞

0
𝑃(𝑎𝑥/3) exp(−𝑥)𝑥𝛽−1d𝑥, 𝑃(𝑧) = 𝑁 (𝑧)

𝐷 (𝑧) . (10)

The expansion coefficients of 𝑃(𝑧) = 1 +𝑂 (𝑧) are obtained from those those of 𝛾(𝑎)/𝑎 by dividing
the latter by factorially increasing factors, producing a function 𝑃 which was expected to have a
finite radius of convergence in the Borel variable 𝑧, with singularities on the negative 𝑧-axis, as for
the sum of chains.
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The Padé trick is to convert the expansion of 𝑃, up to 𝑛 loops, into a ratio 𝑁/𝐷 of polynomials
of degrees close to 𝑛/2. Then one can check how well this method reproduces 𝐺𝑛+1. It was found
that this works rather well with 𝛽 ≈ 3 . For example, fitting the first 29 values of 𝐺𝑛 with a ratio
of polynomials of degree 14 gave a pole, coming from the denominator 𝐷 (𝑧), at 𝑧 = −0.994. The
other 13 poles occurred further to the left, with <𝑧 < −1. Moreover the numerator 𝑁 (𝑧) gave no
zero with <𝑧 > 0. Then this method reproduced the first 15 decimal digits of 𝐺30.

The first author, Gerald Dunne and Max Meynig have recently shown that this method works
even better with 𝛽 = 35

12 [3], for reasons that we now explain.

3. Trans-series and resurgent hyperasymptotics

There is an old and rather loose argument, going back to Freeman Dyson in 1952 [10], that we
should not expect realistic field theories to give convergent expansions in the square of a coupling
constant. If they did, we could get sensible answers for a non-unitary theory with an imaginary
coupling constant, such as an electrodynamics in which electrons repel positrons.

There is an amusing converse of this suggestion. If you find an expansion that is Borel
summable, then study it at imaginary coupling. In the case of 𝜙3 theory the resulting non-unitary
theory relates to the Yang-Lee edge singularity in condensed matter physics [11].

So now we recast the Broadhurst-Kreimer problem, in the manner of Borinksy, Dunne and
Meynig [3], by setting 𝑔(𝑥) = 𝛾(−3𝑥)/𝑥, to obtain an ODE that is economically written as

(𝑔(𝑥)𝑃 − 1) (𝑔(𝑥)𝑃 − 2) (𝑔(𝑥)𝑃 − 3)𝑔(𝑥) = −3, 𝑃 = 𝑥

(
2𝑥

d
d𝑥

+ 1
)
, (11)

and has an unsummable formal perturbative solution

𝑔0(𝑥) ∼
∞∑︁
𝑛=0

𝐴𝑛𝑥
𝑛 =

1
2
+ 11

24
𝑥 + 47

36
𝑥2 + 2249

384
𝑥3 + 356789

10368
𝑥4 + 60819625

248832
𝑥5 +𝑂 (𝑥6). (12)

The expansion coefficients behave as

𝐴𝑛 = 𝑆1Γ

(
𝑛 + 35

12

) (
1 − 97

48

(
1
𝑛

)
+𝑂

(
1
𝑛2

))
, (13)

at large 𝑛, with a Stokes constant

𝑆1 = 0.087595552909179124483795447421262990627388017406822 . . . (14)

that can be determined, empirically, by considering a solution

𝑔(𝑥) = 𝑔0(𝑥) + 𝜎1𝑥
−𝛽 exp(−1/𝑥)ℎ1(𝑥) +𝑂 (𝜎2

1 ) (15)

and retaining terms linear in 𝜎1 in the non-linear ODE. This yields a linear homogeneous ODE for
ℎ1(𝑥), which permits a solution that is finite and regular at 𝑥 = 0 if and only if 𝛽 = 35

12 . Normalizing
𝜎1 by setting ℎ1(0) = −1, we obtain the expansion of

ℎ1(𝑥) ∼
∞∑︁
𝑘=0

𝐵𝑘𝑥
𝑘 = −1 + 97

48
𝑥 + 53917

13824
𝑥2 + 3026443

221184
𝑥3 + 32035763261

382205952
𝑥4 +𝑂 (𝑥5) (16)
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which gives the first-instanton correction to the perturbative solution, suppressed by exp(−1/𝑥).
By developing the series 𝐴𝑛 and 𝐵𝑘 , we were able to determine 3000 digits of 𝑆1 [4] in

𝐴𝑛 ∼ −𝑆1
∑︁
𝑘≥0

Γ

(
𝑛 + 35

12
− 𝑘

)
𝐵𝑘 . (17)

This is an example of resurgence [12]: information about 𝐴𝑛 resurges in 𝐵𝑘 , and vice versa, because
both 𝐴(𝑥) = 𝑔0(𝑥) and 𝐵(𝑥) = ℎ1(𝑥) know about the same physics.

Hyperasymptotic expansions concern the study of how 𝐵𝑛 behaves at large 𝑛, which involves
another set of numbers 𝐶𝑘 , at small 𝑘 , and so on, ad infinitum. They involve terms suppressed by
exp(−𝑚/𝑥), with action 𝑚 > 1. For this third-order ODE, there are 3 solutions to the linearized
problem [3], namely

𝑔(𝑥) = 𝑔0(𝑥) + 𝜎𝑚

(
𝑥−

35
12 𝑒−

1
𝑥

)𝑚
ℎ𝑚(𝑥) +𝑂 (𝜎2

𝑚), 𝑚 ∈ {1, 2, 3}, (18)

with ℎ2/𝑥5 = 𝐶 and ℎ3/𝑥5 = 𝐷 finite and regular near the origin.
Then we use a linearized ODE to develop the expansions

𝐶 (𝑥) = ℎ2(𝑥)/𝑥5 = −1 + 151
24

𝑥 − 63727
3456

𝑥2 + 7112963
82944

𝑥3 − 7975908763𝑥
23887872

𝑥4 +𝑂 (𝑥5), (19)

𝐷 (𝑥) = ℎ3(𝑥)/𝑥5 = −1 + 227
48

𝑥 + 1399
4608

𝑥2 + 814211
73728

𝑥3 + 3444654437
42467328

𝑥4 +𝑂 (𝑥5). (20)

This suggests to also study the higher order corrections in 𝜎1, 𝜎2 and 𝜎3, which leads to
the trans-series. The trans-series organizes the higher order instanton corrections to the solution
of the ODE and it neatly reflects the perpetuating low-order/large-order correspondence of the
hyperasymptotic expansions. Before presenting the trans-series solution to (11), we remark on
some of its general features.

1. The terms suppressed by exp(−2/𝑥) involve 𝜎2 and 𝜎2
1 . The former are given by 𝐶 and the

latter are determined by an inhomogeneous linear ODE, whose solution is ambiguous, up to
a multiple of the homogeneous solution ℎ2 = 𝑥5𝐶, since we can shift 𝜎2 by a multiple of 𝜎2

1 .

2. In the terms suppressed by exp(−3/𝑥) there a second ambiguity, since we can shift 𝜎3 by a
multiple of 𝜎3

1 .

3. Ambiguities of inhomogeneous solutions occur at places in expansions where logarithms first
arise. This happens when the power of 𝑥 in an expansion is a multiple of 5.

4. The highest power of log(𝑥), in terms with action 𝑚, is b𝑚/2c.

The terms in the trans-series solution to (11) with action 𝑚 ≤ 4 are of the form [4],

𝑔 =
∑︁
𝑚≥0

𝑔𝑚

(
𝑥−

35
12 𝑒−

1
𝑥

)𝑚
, 𝐿 =

21265
2304

𝑥5 log(𝑥), (21)

𝑔0 = 𝐴, 𝑔1 = 𝜎1𝐵, 𝑔2 = 𝜎2𝑥
5𝐶 + 𝜎2

1 (𝐹 + 𝐶𝐿), (22)
𝑔3 = 𝜎3𝑥

5𝐷 + 𝜎1𝜎2𝑥
5𝐸 + 𝜎3

1 (𝐼 + (𝐷 + 𝐸)𝐿), (23)
𝑔4 = 𝜎1𝜎3𝑥

5𝐺 + 𝜎2
2 𝑥

10𝐻 + 𝜎2
1𝜎2𝑥

5(𝐽 + 2𝐻𝐿) + 𝜎4
1 (𝐾 + (𝐺 + 𝐽)𝐿 + 𝐻𝐿2). (24)
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Denoting the coefficients of 𝑥𝑛 in functions by subscripts, we found that the choices

𝐹5
2!

=
𝐼5
3!

=
32642693907919

36691771392
(25)

greatly simplify our system of hyperasymptotic expansions. Then

𝐵𝑛 ∼ −2𝑆1
∑︁
𝑘≥0

𝐹𝑘Γ(𝑛 + 35
12 − 𝑘)

+ 4𝑆1
∑︁
𝑘≥0

𝐶𝑘Γ(𝑛 − 25
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

25
12 − 𝑘) + 𝑑1

)
, (26)

𝑑1 = −43.332634728250755924500717390319380703460728022278 . . . (27)

with 𝜓(𝑧) = Γ′(𝑧)/Γ(𝑧) = log(𝑧) + 𝑂 (1/𝑧), shows the 𝑚 = 1 term, at large 𝑛, looking forward to
𝑚 = 2 terms, at small 𝑘 .

For the asymptotic expansion of the second-instanton coefficients, we found

𝐶𝑛 ∼ −𝑆1
∑︁
𝑘≥0

𝐸𝑘Γ(𝑛 + 35
12 − 𝑘) + 𝑆3

∑︁
𝑘≥0

𝐵𝑘 (−1)𝑛−𝑘Γ(𝑛 + 25
12 − 𝑘). (28)

The first sum looks forwards to 𝑚 = 3 in the trans-series, where coefficients of

𝐸 (𝑥) = −4 + 371
12 𝑥 −

111785
1152 𝑥

2 + 8206067
18432 𝑥

3 − 18251431003
10616832 𝑥4 +𝑂 (𝑥5) (29)

appear. It does not contain the coefficients 𝐷𝑘 of the third instanton, which decouples from the
asymptotic expansion for the second instanton.

The second sum in (28) has alternating signs, looks backwards to 𝑚 = 1 and is suppressed by
a factor of 1/𝑛5/6. This can be understood using alien calculus. Likewise,

𝐹𝑛 ∼ − 3𝑆1
∑︁
𝑘≥0

𝐼𝑘Γ(𝑛 + 35
12 − 𝑘)

+ 2𝑆1
∑︁
𝑘≥0

(3𝐷𝑘 + 2𝐸𝑘)Γ(𝑛 − 25
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

25
12 − 𝑘) + 𝑑1

)
− 2𝑆3

∑︁
𝑘≥0

𝐵𝑘 (−1)𝑛−𝑘Γ(𝑛 − 35
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

35
12 − 𝑘) + 𝑓1

)
(30)

looks forwards to 𝐼𝑘 , 𝐷𝑘 and 𝐸𝑘 , at 𝑚 = 3, and backwards to 𝐵𝑘 at, 𝑚 = 1.
The new constants in (30) are

𝑆3 = 2.1717853140590990211608601227903892302479464193027 . . . (31)
𝑓1 = −40.903692509228515003814479126901354785263669553014 . . . (32)
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Two more were discovered in the backward looking terms of

𝐼𝑛 ∼ −4𝑆1
∑︁
𝑘≥0

𝐾𝑘Γ(𝑛 + 35
12 − 𝑘)

+2𝑆1
∑︁
𝑘≥0

(3𝐺𝑘 + 2𝐽𝑘)Γ(𝑛 − 25
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

25
12 − 𝑘) + 𝑑1

)
−4𝑆3

∑︁
𝑘≥0

𝐹𝑘 (−1)𝑛−𝑘Γ(𝑛 − 35
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

35
12 − 𝑘) + 𝑓1

)
−8𝑆3

∑︁
𝑘≥0

𝐶𝑘 (−1)𝑛−𝑘Γ(𝑛 − 95
12 − 𝑘)𝑄(𝑛 − 95

12 − 𝑘), (33)

𝑄(𝑧) =
(

21265
4608

)2 (
𝜓2(𝑧) + 𝜓′(𝑧)

)
+ 2𝑐1

(
21265
4608

)
𝜓(𝑧) + 𝑐2, (34)

𝑐1 = −41.031956764302710583921068101545509453704897898188 . . . (35)
𝑐2/𝑐2

1 = 1.0002016472131992595822805380838324188011572304276 . . . (36)

We believe that 6 constants, 𝑆1, 𝑑1, 𝑆3, 𝑓1, 𝑐1, 𝑐2, suffice for the complete description of resurgence.
Conjecture [4]: The trans-series solution to (11) and its resurgence take the forms

𝑔(𝑥) =
∞∑︁

𝑚=0

(
𝑥−

35
12 𝑒−

1
𝑥

)𝑚 b𝑚/2c∑︁
𝑖=0

b (𝑚−2𝑖)/3c∑︁
𝑗=0

𝜎
𝑚−2𝑖−3 𝑗
1 �̂�𝑖

2�̂�
𝑗

3 𝑥
5(𝑖+ 𝑗 )

∑︁
𝑛≥0

𝑎
(𝑚)
𝑖, 𝑗

(𝑛)𝑥𝑛, (37)

�̂�2 = 𝜎2 + 21265
2304 𝜎

2
1 log(𝑥), �̂�3 = 𝜎3 + 21265

2304 𝜎
3
1 log(𝑥), (38)

𝑎
(𝑚)
𝑖, 𝑗

(𝑛) ∼ −(𝑠 + 1)𝑆1
∑︁
𝑘≥0

𝑎
(𝑚+1)
𝑖, 𝑗

(𝑘)Γ(𝑛 + 35
12 − 𝑘)

+ 𝑆1
∑︁
𝑘≥0

(
4(𝑖 + 1)𝑎 (𝑚+1)

𝑖+1, 𝑗 (𝑘) + 6( 𝑗 + 1)𝑎 (𝑚+1)
𝑖, 𝑗+1 (𝑘)

)
Γ(𝑛 − 25

12 − 𝑘)
(

21265
4608 𝜓(𝑛 −

25
12 − 𝑘) + 𝑑1

)
+ 1

4𝑆3
∑︁
𝑘≥0

(
4(𝑠 + 1)𝑎 (𝑚−1)

𝑖−1, 𝑗 (𝑘) + 6( 𝑗 + 1)𝑎 (𝑚−1)
𝑖−2, 𝑗+1(𝑘)

)
(−1)𝑛−𝑘Γ(𝑛 + 25

12 − 𝑘)

− 2(𝑠 − 2𝑖 − 1)𝑆3
∑︁
𝑘≥0

𝑎
(𝑚−1)
𝑖, 𝑗

(𝑘) (−1)𝑛−𝑘Γ(𝑛 − 35
12 − 𝑘)

(
21265
4608 𝜓(𝑛 −

35
12 − 𝑘) + 𝑓1

)
− 𝑆3

∑︁
𝑘≥0

(
8(𝑖 + 1)𝑎 (𝑚−1)

𝑖+1, 𝑗 (𝑘) + 6( 𝑗 + 1)𝑎 (𝑚−1)
𝑖, 𝑗+1 (𝑘)

)
(−1)𝑛−𝑘Γ(𝑛 − 95

12 − 𝑘)𝑄(𝑛 − 95
12 − 𝑘)

− ( 𝑓1 − 𝑐1)𝑆3
∑︁
𝑘≥0

(
2(𝑖 + 1)𝑎 (𝑚−1)

𝑖+1, 𝑗−1(𝑘) + 6(𝑖 + 𝑗)𝑎 (𝑚−1)
𝑖, 𝑗

(𝑘)
)
(−1)𝑛−𝑘Γ(𝑛 − 35

12 − 𝑘), (39)

with 𝑠 = 𝑚 − 2𝑖 − 3 𝑗 and 𝑄(𝑧) =
(

21265
4608

)2 (
𝜓2(𝑧) + 𝜓′(𝑧)

)
+ 2𝑐1

(
21265
4608

)
𝜓(𝑧) + 𝑐2.

4. Comments and conclusions

1. The conjecture exhibits 17 resurgent terms, all of which have been intensively tested at high
precision, for all actions 𝑚 ≤ 8.

2. The 6 Stokes constants have been determined to better than 1000 digits.

3. Excellent freeware, from Pari-GP in Bordeaux, was vital to this enterprise.
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4. First and second derivatives of Γ and suppressions by 1/𝑛5/6 make Richardson acceleration
infeasible. We used systematic matrix inversion.

5. The presence of logarithms in trans-series has been ascribed to resonant actions. We find this
misleading. We have shown that a closely analogous second-order problem is both resonant
and log-free.
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