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In a recent work by some of us it was shown that the long-standing discrepancy between the QCD
perturbation series for the inclusive hadronic tau decay rate computed in the CIPT and FOPT
expansion approaches can be understood from the fact that CIPT has an infrared (IR) sensitivity
that it not compatible with the standard form of the operator production expansion (OPE). For
concrete IR renormalonmodels for the QCDAdler function the resulting CIPT-FOPT discrepancy,
the asymptotic separation, can be calculated analytically from the Borel representation of the CIPT
series expansion. If the known perturbative corrections for the QCD Adler function at the 5-loop
level already have a sizeable contribution from the asymptotic behavior related to the gluon
condensate (GC) renormalon, the asymptotic separation is dominated by that renormalon. This
implies that the CIPT expansion can be reconciled with FOPT, when a renormalon-free scheme
for the GC is adopted. In this talk we discuss such a renormalon-free scheme for the GC, which
involves perturbative subtractions in analogy to using short-distance quarkmass schemes instead of
the pole mass. Using a concrete realistic high-order Borel model for the Adler function consistent
with the known corrections up to 5 loops and containing a sizeable GC renormalon contribution,
we show that the CIPT-FOPT discrepancy can be avoided when switching to the renormalon-
free GC scheme. At the same time, the perturbative convergence of τ hadronic spectral funtion
moments strongly sensitive to the GC OPE corrections is considerably improved. We show that
these improvements may lead to higher precision for strong coupling determinations.
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1. Introduction

Extractions of the strong coupling αs from inclusive hadronic τ decay spectral function mo-
ments represents one of themost precisemethods to obtain this fundamental parameter of QCD from
experimental data. The determinations are based onweighted finite-energy sum rule integrals (spec-
tral function moments) over the experimental inclusive τ hadronic spectral functions compared to
the corresponding theory predictions. The inclusive τ hadronic decay width Rτ ≡

Γ[τ−→hadrons ντ (γ)]
Γ[τ−→e−νeντ (γ)]

is a particular case of these spectral function moments. In the chiral limit the theoretical spectral
function moments can be dissected into the following individual contributions,

R(W ) (s0) =
3
2

Sew |Vud |
2
[
δtree
W + δ(0)

W (s0) +
∑
d≥4

δ(d)
W (s0) + δ(DV)

W (s0)
]
, (1)

where Sew denotes electroweak corrections and s0 is the upper bound of the weighted spectral
function integrations. δtree

W corresponds to the tree level contribution while δ(0)
W (s0) represents the

perturbative QCD corrections. The index W refers to the weight function W (x) which satisfies
W (1) = 0 and typically is a polynomial in x. For the inclusive decay rate, which is called the
kinematic moment, this polynomial is Wkin = (1 − x)3(1 + x) = 1 − 2x + 2x3 − x4 and we
have s0 = m2

τ . The term δ(d)
W (s0) denotes non-perturbative higher dimensional corrections in

the operator product expansion (OPE). The last term in Eq. (1), δ(DV)
W (s0), stands for the duality

violation (DV) contributions, which are suppressed for weight functions with d
dxW (1) = 0 and not

further considered throughout this talk.
The QCD corrections are given by contour integrals of the form (x ≡ s

s0
)

δ(0)
W (s0) =

1
2πi

�
|s |=s0

ds
s

W ( s
s0

) D̂(s), (2)

involving the (reduced) partonic Adler function D̂(s) for invariant mass squared s,

D̂(s) =

∞∑
n=1

cn,1
(αs (−s)

π

)n , (3)

=

∞∑
n=1

(αs (s0)
π

)n n∑
k=1

k cn,k lnk−1(−ss0
) . (4)

The contour integral can be analytically related to an integration along the real positive s-axis
with s0 being the upper bound. The conventional integration path along the circle with |s | = s0

may be deformed as long as it remains in the perturbative region. The nonperturbative terms
δ(d)
W (s0) can be obtained from an analogous integral over the Adler function’s OPE corrections
(a(µ2) = αs (µ2) β0/4π)

DOPE(s) =
2π2

3
1 − 22

81 a(−s) + . . .

s2 〈Ḡ2〉 +

∞∑
d=6

1
(−s)d/2

∑
i

Cd,i (αs (−s))〈Ōd,γi 〉 , (5)

where the term that is leading in the power expansion in Λ2
QCD/s involves the renormalization

scheme-invariant GC matrix element 〈Ḡ2〉 = 〈Ω|(αs

π + . . .)G
µνGµν |Ω〉. For spectral function

2
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moments with a weight function without a quadratic x2 term, such as Wkin, the GC correction
is very strongly suppressed (and even vanishing when the higher order corrections in its Wilson
coefficient are neglected).

In the theory integrals a prescription for setting the renormalization scale µhas to be adopted and
the twomost commonly considered prescriptions are known as fixed-order (FOPT), where δ(0)

W (s0) is
an expansion in powers ofαs (s0) (seeEq. (4)), and contour-improved perturbation theory (CIPT) [1],
where the expansion is in powers of αs (−s) before doing the contour integration (see Eq. (3)). When
determining the strong coupling from τ hadronic spectral function moments, the discrepancy of the
results obtained from using either FOPT or CIPT has been discussed controversially [2, 3] and up
to now constituted one of the dominant uncertainties in the determination of αs from hadronic τ
decays. In general, CIPT leads to smaller values for δ(0)

W (s0) than FOPT, which typically results in
larger extracted values for αs (m2

τ ) when the CIPT expansion is employed.

2. Asymptotic Separation

In a recent work two of us have provided a conceptual as well as quantitative analysis of the
observed CIPT-FOPT discrepancy. In contrast to previous studies [2, 3, 6], where it was assumed
that the Borel representations for the FOPT and CIPT expansion series are identical, it was shown
in Ref. [4, 5] that their Borel representations are in fact intrinsically different in the presence of IR
renormalons. In particular, the expressions for the two non-equivalent representations are given by

δ(0),FOPT
W,Borel (s0) = PV

∫ ∞

0
du

1
2πi

�
|x |=1

dx
x

W (x) B[D̂](u) e−
u

a(−xs0 ) , (6)

δ(0),CIPT
W,Borel (s0) =

∫ ∞

0
dū

1
2πi

�
Cx

dx
x

W (x)
(αs (−xs0)
αs (s0)

)
B[D̂]

(
αs (−xs0)
αs (s0) ū

)
e−

ū
a(s0 ) , (7)

where B[D̂](u) is the Borel function of the real-valued Euclidean Adler function D̂(−s0) with
respect to an expansion in αs (s0), in the sense that the u-Taylor series of B[D̂](u) gives the series
in powers of αs (s0) through the Borel integral

D̂(−s0) =
∫ ∞

0
du B[D̂](u) e−

u
a(s0 ) . (8)

The previously known FOPT Borel representation in Eq. (6) includes the commonly employed
principal value (PV) prescription to obtain a well-defined result for the value of the Borel repre-
sentation (briefly called the Borel sum). This is due to the IR renormalon cuts (or poles) contained
in B[D̂](u) along the positive real u-axis. The novel Borel representation for the CIPT series in
Eq. (7) implies a different regularization of the non-analytic IR renormalon cuts because αs (−xs0)

αs (s0) ū
is complex-valued. Due to the fact that the complex-valued coupling αs (−xs0) is now part of the
argument of the Borel function B[D̂], the path Cx needs to be deformed away from the circle |x | = 1
to account for the modified singularity structure when the CIPT Borel sum is evaluated.

The Borel representations are formally related through the complex-valued change of variables
u = ū αs (−xs0)/αs (s0), which (as illustrated in Fig. 1 for Im[αs (−xs0)] > 0) leads to a difference
between δ(0),FOPT

W,Borel (s0) and δ(0),CIPT
W,Borel (s0) in the presence of IR renormalon cuts. This difference can

3
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a(-x)
a0

(path 1)

(path 2)

p

u

UV renormalon cut

a(-x)
a0

(path 1a)

(path 1b)

(path 2)

p

u

IR renormalon cut

Figure 1: Graphical representation of the integration paths in the complex Borel plane involved for the
FOPT and CIPT approach for the cases of a UV renormalon (p < 0, left panel) and an IR renormalon (p > 0,
right panel). The red zig-zag lines denote renormalon cuts starting at u = p. Figures taken from Ref. [4].

be computed analytically for any concrete expression of the Borel function B(u) and is dubbed
the asymptotic separation (AS). The asymptotic separation describes the observed discrepancy
between the CIPT and FOPT expansions for spectral function moments very well, as is shown for
example for the kinematic moment in the left panel in Fig. 2 as a function the order. Note that
the results shown in Fig. 2 up to order 5 (i.e. 6-loops for the Adler function) correspond to the
QCD corrections used in state-of-the-art phenomenological analyses,1 while the orders beyond are
based on a Borel model for B[D̂](u) following Ref. [6]. The FOPT Borel sum (red horizontal line)
and the CIPT Borel sum (blue horizontal line), which is the sum of the FOPT Borel sum and the
asymptotic separation, are computed from the Borel model as well. The Borel model provides a
good approximation for the true Borel function [3] and relies on the proposition that the asymptotic
behavior of the gluon condensate (GC) renormalon has a sizeable contribution to the known QCD
corrections up to 5-loops and therefore contains a GC contribution with a sizeable norm Ng. The
known QCD corrections to the Adler function are fully consistent with this proposition. In this
context the asymptotic separation is numerically by far dominated by the contribution from the GC
renormalon.

One can also construct conceptual toy Borel models for B[D̂](u) containing only the GC
renormalon, which in the context of the standard form of the OPE and the canonical renormalon
calculus formalism must lead to convergent spectral function moments for weight functions such as
Wkin (because for these spectral function moments all OPE corrections vanish identically). It was
shown in Ref. [4, 5] that for these moments δ(0)

W (s0) is indeed convergent in the FOPT expansion,
while the CIPT expansion series is divergent. This implies that the OPE corrections that need to be
added to δ(0)

W in the CIPT approach differ from those in the FOPT approach and, more importantly,
do not have the standard form assumed in the literature. In other words, the CIPT expansion and the
CIPT Borel representations given in Eq. (7) are not consistent with the standard form of the OPE
as given in Eq. (5).

From these results one can conclude that the consistency of the CIPT expansion can be
reconciled (at least for the most part) if the GC renormalon is removed from the Adler function.
This can be achieved through a change of scheme for the GC matrix element, which is in close
analogy to the well-known use of short-distance mass renormalization schemes in favor of the pole

1This includes the concretely known 5-loop corrections up to c4,1 [12] and an estimate for the 6-loop coefficient c5,1.
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Figure 2: Perturbative series for the kinematic moment for s0 = m2
τ in the FOPT and CIPT expansions as a

function of order n in the MS GC scheme (left panel) and the RF GC scheme for R = 0.8 mτ and Ng = 0.64
(right panel) using the Borel model in section 6 of Ref. [6] for n > 5. The red and blue horizontal lines
represents the Borel sums (BSs) of the FOPT and CIPT series, respectively.

mass for quark mass-sensitive observables [7, 8].

3. Renormalon-Free Gluon Condensate Scheme

In Ref. [9] a suitable renormalon-free (RF) GC matrix element scheme was constructed in two
steps. Calling the original GC matrix element 〈Ḡ2〉 (which still contains the O(Λ4

QCD) renormalon)
MS GC scheme, one can first define an R-scale dependent renormalon-free GC matrix element
〈G2〉(R2) by the relation

〈Ḡ2〉 ≡ 〈G2〉(R2) − R4
∑
`=1

Ng r (4,0)
`

ā` (R2) . (9)

The term Ng refers to the universal norm of the gluon condensate and R takes the role of an IR
factorization scale. The coefficients r (4,0)

`
contain the divergent asymptotic series related to a pure

O(Λ4
QCD) renormalon and, using the C-scheme for the strong coupling [10] (indicated by the bar),

can be given in closed form, r (4,0)
`
= ( 1

2 )`+4b̂1 Γ(`+4b̂1)
Γ(1+4b̂1)

. Numerically the C-scheme for the strong
coupling is very close to the MS scheme, see the appendix of Ref. [9] for details. However, the
definition of Eq. (9) is somewhat inconvenient for actual phenomenological applications, since the
dependence on R, which cancels between the subtraction series and 〈G2〉(R2), would generate a
sizeable intermediate R-dependence. It is therefore suitable to define, in a second step a scale-
invariant GC matrix element 〈G2〉RF, called the RF GC scheme, by the relation

〈G2〉(R2) ≡ 〈G2〉RF + Ng c̄0(R2) . (10)

The function c̄0(R2) satisfies the same R-evolution equation as the subtraction series on the RHS in
Eq. (9) and thus of 〈G2〉(R2). Because the subtraction series contains a pure O(Λ4

QCD) renormalon
this R-evolution equation is a convergent series [11] and can even be given in closed form [9]. A

5
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suitable choice is (b̂1 = β1/2β2
0)

c̄0(R2) ≡ −
R4 e

− 2
ā(R2 )

(ā(R2))4b̂1
Re

[
e4πb̂1i Γ

(
− 4b̂1,−

2
ā(R2)

) ]
, (11)

which is the FOPT Borel sum of the subtraction series itself using the common PV prescription.
The perturbative Adler function in the RF GC scheme then has the form

D̂RF(s, R2) =
1
s2

[
1 + c̄(1)

4,0 ā(−s)
] 2π2

3
Ng c̄0(R2) +

∞∑
`=1

c̄` ā` (−s) (12)

−
[
1 + c̄(1)

4,0 ā(−s)
] 2π2

3
Ng

R4

s2

∞∑
`=1

(1
2
)`+4b̂1 Γ(` + 4b̂1)

Γ(1 + 4b̂1)
ā` (R2) ,

where the term involving c̄0(R2) must be treated strictly as a tree-level term (i.e. not being reexpanded
again and numerically evaluated in the C-scheme for the strong coupling). For the perturbation
series, either using the CIPT or the FOPT renormalization scale setting prescription, it is mandatory
to consistently expand and truncate the other terms in a` (−s) or a` (s0), i.e. using the strong coupling
at a common renormalization scale.2 This ensures the systematic removal of the GC renormalon
from the Adler function. The GC OPE correction in the RF GC scheme adopts the standard form

δDOPE,RF
4,0 (s) =

1
s2

2π2

3
[
1 −

22
81

ā(−s)
]
〈G2〉RF . (13)

A graphical illustration of the impact of the subtraction of the gluon condensate renormalon on the
perturbative series in the RF GC scheme is given by the right panel in Fig. 2 for the case of the
kinematic moment, for R = 0.8 mτ and considering again the Borel model for the orders beyond
the 6-loop level. The Borel model provides the concrete value Ng = 0.64 for the GC renormalon
norm. In the RF GC scheme the CIPT and FOPT series are perfectly compatible and both approach
the FOPT Borel sum given by the FOPT Borel representation in Eq. (6).

In Fig. 3 the results of Fig. 2 are shown once more, but this time we include the error bands
arising from renormalization scale variations. The latter are determined by expanding in powers
of ā` (−ξs) (for CIPT) and ā` (ξs0) (for FOPT) and using variations in the interval 1/2 ≤ ξ ≤ 2.
While the scale variation bands do not overlap at the six-loop level in the MS GC scheme, they do
so in the RF GC scheme.

4. Strong coupling predictions in the RF GC scheme

The CIPT-FOPT discrepancy has been one of the dominant sources of uncertainty in αs

determinations from experimental data on the inclusive hadronic τ decay spectra. We can study
the impact the RF GC can have on strong coupling determinations from data through the following
simplistic toy analysis: We take the spectral function moment FOPT Borel sum of Eq. (6) based on
the Borel model mentioned above for the input value αs (m2

τ ) = 0.315 as a proxy for the perturbative

2This expansion may be carried out using the usual MS strong coupling scheme. We have done so in our numerical
analyses below.
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Figure 3: Left panels: Series for FOPT and CIPT expansions for �
(0)
W (m2

⌧ ) as a func-
tion of order in full QCD in the MS GC scheme for different weight functions W (x) and
↵s(m

2
⌧ ) = 0.315. The orders beyond 5 are obtained from the multi-renormalon Borel model.

Renormalization scale variations are indicated by the colored bands. Right panels: Corre-
sponding series for FOPT and CIPT expansions for �

(0)
W (m2

⌧ , R
2) in the RF GC scheme.

5.2 Numerical Analysis

In Fig. 3, we compare the FOPT (red color) and CIPT (blue color) expansion series as a
function of the order for the three spectral function moments with W (x) = (1�x)3(1+x),
W (x) = (1 � x)3 and W (x) = 2(1 � x), already considered in Sec. 4, for s0 = m2

⌧ and
↵s(m

2
⌧ ) = 0.315. The left panels display the unsubtracted results in the MS GC scheme,

and the right panels show the subtracted results in the RF scheme for R = 0.8 m⌧ . The
connected colored dots represent the truncated series values for the default renormalization
scale choice for ⇠ = 1. The shaded bands again show the respective renormalization scale

– 36 –

Figure 3: FOPT and CIPT expansion series in theMSGC scheme (left panel) as well as in the RFGC scheme
for R = 0.8 mτ and Ng = 0.64 (right panel) for the case of the kinematic moment with αs (m2

τ ) = 0.315
and including renormalization scale variations. The vertical line indicates the model dependence starting at
order six. The space between the dashed lines corresponds to the ambiguity of the FOPT Borel sum. Figures
taken from Ref. [9].

part of the “experimental" moment values and determine the strong coupling from the 6-loop
series (as it is common in current state-of-the-art strong coupling determinations). To estimate
the theoretical uncertainty we account for renormalization scale variations (using the prescription
of Fig. 3), an uncertainty in the estimate of the 6-loop coefficient c5,1 and variations for R in the
range 0.7mτ ≤ R ≤ 0.9mτ (see Ref. [9] for details). We consider the spectral function moments
for the weight functions Wkin(x), W2(x) = (1 − x)3 = 1 − 3x + 3x2 − x3 and W3(x) = 2(1 − x).
For the spectral function moments associated to the weight functions Wkin(x) and W3(x) the GC
OPE correction is highly suppressed (because the weight functions do not contain a quadratic
term x2). Spectral function moments of this kind have been the basis of all recent high precision
determinations of αs from hadronic τ decay data. On the other hand, for the spectral function
moment associated to the weight function W2(x) the GC OPE correction unsuppressed (because
W2 contains a quadratic term x2).

The results are shown in Fig. 4. The left panel shows to the resulting extracted values for
αs (m2

τ ) using perturbation theory in the unsubtracted MS GC scheme. For the kinematic moment
and the one associated to the weight function W3 we see the well-known CIPT-FOPT discrepancy,
where the values for αs (m2

τ ) obtained from CIPT and FOPT are not compatible and where the
result for αs (m2

τ ) from the CIPT expansion comes out way too large. For the moment associated to
the weight function W2 the results are compatible, but the errors are very large as well, reflecting
the large perturbative uncertainties for moments where the GC OPE corrections is unsuppressed.
The right panel shows the results obtained using the RF GC scheme. The CIPT and FOPT results
for αs (m2

τ ) obtained from the moments for Wkin and W3 are now fully compatible and consistent
with the input value αs (m2

τ ) = 0.315. This has been achieved due to the significant modification
of the CIPT expansion when the RF GC scheme is employed. Furthermore, the large uncertainties
for αs (m2

τ ) obtained from the moment associated to the weight function W2, which were large for
CIPT as well as FOPT in the MS GC scheme, have decreased significantly. The results show that
in the RF GC scheme we can achieve two improvements. First, the CIPT-FOPT discrepancy in
strong coupling determinations can be avoided and, second, high-precision analyses can be carried
out with spectral function moments where the GC OPE corrections is unsuppressed.

7
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Figure 4: Strong coupling results determined from the toy analysis described in Sec. 4. The input value for
the ‘experimental’ moments is αs (m2

τ ) = 0.315. Figures taken from Ref. [9].

5. Conclusions

In the recent work of Refs. [4, 5] it was shown that the Borel representations for the FOPT
and CIPT hadronic τ spectral function moments are intrinsically different. In the presence of IR
renormalons the different analytic properties inherent to the FOPT and CIPT expansions results in a
systematic and computable disparity in their respective Borel sums, which we called the asymptotic
separation. From dedicated studies of toy Borel models for the Adler function it was shown that the
CIPT expansion is not compatible with the standard form of the operator product expansion. Given
that the major contribution to the CIPT-FOPT discrepancy is related to the leading gluon condensate
renormalon, we have shown in Ref. [9] that the discrepancy between the two approaches can be
reconciled in an IR subtracted perturbation theory. In particular, we defined a new renormalon-
free gluon condensate scheme [9] and observed that in this scheme the perturbative series indeed
converge to the same Borel sum given by the FOPT Borel representation. By considering a toy
model extraction of the strong coupling, we showed that the RF GC scheme will lead to strong
coupling determinations from hadronic τ decays where the CIPT-FOPT discrepancy does not arise
any more. The results shown in this talk were based on the concrete value Ng = 0.64 for gluon
condensate renormalon norm which was obtained from a concrete realistic Borel model for the
Adler function. In practice Ng can only be determined approximately. In Ref. [13] we have carried
out complete phenomenological strong coupling determinations in the RF GC scheme, accounting
also for the uncertainty in the GC renormalon norm Ng, which turn out to give a relatively small
contribution to the final error in αs (m2

τ ).
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