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1. Introduction

The inclusive semileptonic 𝐵 → 𝑋𝑐ℓ𝜈̄ℓ decay, mediated by the charged-current transition
𝑏 → 𝑐ℓ𝜈̄ℓ , is a standard probe of the CKM matrix element |𝑉𝑐𝑏 |. The comparison between the
experimental value of the branching ratio B(𝐵 → 𝑋𝑐ℓ𝜈̄ℓ) and its theoretical prediction obtained
within the framework of the Heavy Quark Expansion allowed the extraction of |𝑉𝑐𝑏 | with a 1.2−1.5%
accuracy [1, 2]. One of the main result of HQE is that the 𝐵 meson decay is the same as
a free bottom quark decay in the 𝑚𝑏 → ∞ limit. In addition higher-order perturbative and non-
perturbative corrections can be included in a systematic way as higher 𝛼𝑠 andΛQCD/𝑚𝑏 corrections.
Schematically, the total semileptonic decay rate Γsl has the following structure:

Γsl =
𝐺2

𝐹
𝑚5

𝑏

192𝜋3 𝐴EW

{ (
1 − 𝜇2

𝜋

2𝑚2
𝑏

) (
𝑋0(𝜌) +

𝛼𝑠

𝜋
𝑋1(𝜌) +

(𝛼𝑠

𝜋

)2
𝑋2(𝜌) +

(𝛼𝑠

𝜋

)3
𝑋3(𝜌)

)
+

(
𝜇2
𝐺

2𝑚2
𝑏

−
𝜌3
𝐿𝑆

2𝑚3
𝑏

) (
𝑌0(𝜌) +

𝛼𝑠

𝜋
𝑌1(𝜌)

)
+

𝜌3
𝐷

2𝑚3
𝑏

(
𝑍0(𝜌) +

𝛼𝑠

𝜋
𝑍1(𝜌)

)
+𝑂

(
1
𝑚4

𝑏

) }
, (1)

where 𝛼𝑠 ≡ 𝛼
(4)
𝑠 (𝜇𝑠) is the strong coupling constant at the scale 𝜇𝑠 with 4 active quark flavours,

𝑚𝑏 is the bottom quark mass and 𝜌 = 𝑚𝑐/𝑚𝑏 is the ratio between the charm and the bottom quark
masses.

The parameters 𝜇2
𝜋 , 𝜇

2
𝐺
, 𝜌3

𝐷
and 𝜌3

𝐿𝑆
are non-perturbative matrix elements of local operators

between 𝐵-meson states. Their values is extracted via global fits of moments of the electron energy
spectrum and hadronic invariant mass spectrum [1]. Recently they have been also extracted from
moments of the lepton invariant mass 𝑞2 [2], which depend on a reduced set of non-perturbative
parameters [3]. The most recent determinations of |𝑉𝑐𝑏 | from global fits of inclusive 𝐵 decays in
the kinetic scheme [4] are

|𝑉𝑐𝑏 | = 42.16 (51) × 10−3 [1], |𝑉𝑐𝑏 | = 41.69 (63) × 10−3 [2] . (2)

In addition, a recent (non-fit) analysis using the 1S scheme found a value consistent with the above
determinations, but exhibits a slightly larger uncertainty [5]. The recent improvements in precision
of the inclusive |𝑉𝑐𝑏 |, compared to previous determinations [6, 7], have been achieved thanks to
new calculations of the third order correction to the partonic 𝑏 → 𝑋𝑐ℓ𝜈̄ℓ decay rate [8], partially
checked in [9], and the 𝑂 (𝛼𝑠) corrections to the Wilson coefficient of 𝜌𝐷 [10, 11]. Perturbative
uncertainties constitute one of the limiting factors in the extraction of 𝑉𝑐𝑏.

The second improvement comes from the calculation up to 𝑂 (𝛼3
𝑠) of the relation between the

pole (or MS) mass and the kinetic mass [4] of a heavy quark [12, 13]. On the one hand, the scheme
conversion is necessary to express the decay rate in terms of a short mass scheme also at 𝑂 (𝛼3

𝑠).
On the other, the improved relation allowed a more precise conversion of the bottom MS mass,
extracted in lattice QCD or sum rules, into the kinetic scheme with a conversion uncertainty of
15 MeV, about a 50% improvement compared to the previous two-loop conversion [14, 15].

In these proceedings we review the calculation of the N3LO corrections to the partonic 𝑏 →
𝑋𝑐ℓ𝜈̄ℓ decay rate. Finite charm mass effects are taken into account via an asymptotic expansion
of Feynman integrals in the limit 𝑚𝑐 ≃ 𝑚𝑏, i.e. 1 − 𝑚𝑐/𝑚𝑏 ≪ 1. The method has been extended
also to study higher order corrections to the kinematic moments when no experimental cuts are
applied [16].
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2. Asymptotic expansion: a two-loop example

The Feynman diagrams contributing to 𝑏 → 𝑋𝑐ℓ𝜈̄ℓ decay depend on two mass scales, 𝑚𝑏

and 𝑚𝑐. We obtain finite charm mass effects by performing an asymptotic expansion in the limit
1 − 𝑚𝑐/𝑚𝑏 ≪ 1. It has been shown already at NNLO that the expansion converges quite fast for
the physical values of the quark masses [17]. The limit corresponds to a threshold expansion with
one heavy mass in the threshold. Let us explain it by considering, as an explicit example, the LO
decay rate. The leading order prediction for the decay rate is

Γsl =
𝐺2

𝐹
𝑚5

𝑏

192𝜋3 |𝑉𝑐𝑏 |2
(
1 − 8𝜌2 − 12𝜌4 log(𝜌2) + 8𝜌6 − 𝜌8

)
. (3)

p →

p + k2 ց

k1 ր

b

ℓ

ν̄ℓ

c

Figure 1: LO contribution to the 𝑏 → 𝑋𝑐ℓ𝜈 decay
rate. Thick black and magenta lines correspond to
bottom and charm quarks, respectively. Thin lines
denote the (massless) lepton and antineutrino.

It can be obtained using the optical the-
orem from the discontinuity of the two-loop
diagram shown in Fig. 1, where the external
bottom quark momentum is 𝑝 and there is only
one kind of massive internal line (the charm
quark) with a mass 𝑚𝑐 ≃ 𝑚𝑏. Let us assume
that the square of the external momentum 𝑝2

and the position of the threshold 𝑚2
𝑐 are close

to each other, i.e. 1 − 𝑚2
𝑐/𝑚2

𝑏
≪ 1, and expand

the Feynman integrals in this limit. The calcu-
lation of the two-loop diagram leads to integrals
of the form

𝐼 =

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

∫
𝑑𝑑𝑘2

(2𝜋)𝑑
1

[−𝑘2
1] [−(𝑘1 − 𝑘2)2] [−(𝑝 + 𝑘2)2 + 𝜌2]

. (4)

For simplicity we set 𝑝2 = 𝑚2
𝑏
= 1, 𝜌 = 𝑚𝑐/𝑚𝑏 and we define 𝑦 ≡ 1 − 𝑚2

𝑐/𝑚2
𝑏
. We apply the

expansion by regions [18, 19] and assign to each loop momentum 𝑘1 and 𝑘2 two possible scalings:
hard (h) when 𝑘 ∼ 𝑚𝑏 and ultrasoft (u) when 𝑘 ∼ 𝑦 ·𝑚𝑏. The third denominator in (4) comes from
the charm propagator. There are only two non-vanishing regions: (hh) and (uu). In all other cases
one obtain massless tadpoles which vanish in dimensional regularization.

In the double-hard region, with both momenta 𝑘1 and 𝑘2 hard, the denominator containing the
charm mass can be expanded expanded in the following way:

1
(𝑝 + 𝑘2)2 − 𝜌2 =

1
𝑘2

2 + 2𝑝 · 𝑘2 + 𝑦

(h)
=

1
𝑘2

2 + 2𝑝 · 𝑘2

∑︁
𝑛≥0

(
−𝑦

𝑘2
2 + 2𝑝 · 𝑘2

)𝑛
. (5)

Such expansion leads to two-loop on-shell integrals of the form

𝐼hh =

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

∫
𝑑𝑑𝑘2

(2𝜋)𝑑
1

[−𝑘2
1] [−(𝑘1 − 𝑘2)2]

∑︁
𝑛≥0

(−𝑦)𝑛

[−𝑘2
2 − 2𝑝 · 𝑘2]𝑛+1

=

(
𝑖

(4𝜋)2−𝜖

)2 ∑︁
𝑛≥0

(𝑝2)1−𝑛−2𝜖 (−𝑦)𝑛 Γ(1 − 𝜖)2Γ(𝜖)Γ(−𝑛 − 4𝜖 + 3)Γ(𝑛 + 2𝜖 − 1)
Γ(𝑛 + 1)Γ(2 − 2𝜖)Γ(−𝑛 − 3𝜖 + 3) , (6)

where 𝜖 = (4 − 𝑑)/2. The contribution from the hard region contains no imaginary part and
therefore can be always neglected, since we are interested only in the discontinuity.
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In case the loop momentum 𝑘2 scales as ultrasoft, the massive propagator is expanded as

1
(𝑝 + 𝑘2)2 − 𝜌2 =

1
𝑘2

2 + 2𝑝 · 𝑘2 + 𝑦

(u)
=

1
2𝑝 · 𝑘2 + 𝑦

∑︁
𝑛≥0

(
−𝑘2

2
2𝑝 · 𝑘2 + 𝑦

)𝑛
. (7)

Note that the ultrasoft region yields the well know heavy-quark propagator in HQET. The parameter
𝑦 is often called in this contest the residual mass [20]. In an HQET framework, such residual mass
would arise by considering the QCD Lagrangian with two heavy quarks, bottom and charm, and
by taking the 𝑚𝑐, 𝑚𝑏 → ∞ limit applying a rephasing of the charm and bottom field with the same
mass parameter 𝑚𝑏. The contribution to (4) from the double ultrasoft region is

𝐼uu =

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

∫
𝑑𝑑𝑘2

(2𝜋)𝑑
1

[−𝑘2
1] [−(𝑘1 − 𝑘2)2]

∑︁
𝑛≥0

(𝑘2)𝑛
[−2𝑝 · 𝑘2 − 𝑦]𝑛+1

=

(
𝑖

(4𝜋)2−𝜖

)2 ∑︁
𝑛≥0

(𝑝2)2𝜖−𝑛−2(−𝑦)𝑛−4𝜖 +3 Γ(1 − 𝜖)Γ(𝑛 − 𝜖 + 1)Γ(−𝑛 + 4𝜖 − 3)
Γ(1 − 𝑛)Γ(𝑛 + 1) . (8)

From the re-expansion of the factor (−𝑦)−4𝜖 in the limit 𝜖 → 0 we generate log(−𝑦) = log(𝑦) + 𝑖𝜋

which yields the desired imaginary part. E.g. for 𝑛 = 0 we have

𝐼𝑢𝑢 =

(
𝑖𝑒−𝜖 𝛾𝐸

(4𝜋)2−𝜖

)2
𝑦3

[
+ 1

24𝜖
+ 11

36
− log(−𝑦)

6
+𝑂 (𝜖)

]
+𝑂 (𝑦4). (9)

The final prediction for the LO decay rate can be written as

Γsl =
𝐺2

𝐹
𝑚5

𝑏

192𝜋3 |𝑉𝑐𝑏 |2
∞∑︁
𝑛=5

24
𝑛(𝑛 − 1) (𝑛 − 2) 𝑦

𝑛. (10)

To improve the convergence of the series, it is convenient to rewrite the expansion in the parameter
𝛿 = 1 − 𝑚𝑐/𝑚𝑏 with 𝑦 = 2𝛿 − 𝛿2. We obtain

Γsl =
𝐺2

𝐹
𝑚5

𝑏

192𝜋3 |𝑉𝑐𝑏 |2
[
64
5
𝛿5 − 96

5
𝛿6 + 288

35
𝛿7 +

∞∑︁
𝑛=8

576
(𝑛 − 4) (𝑛 − 3) (𝑛 − 2) (𝑛 − 1)𝑛𝛿

𝑛

]
. (11)

With the parameter 𝛿 the coefficients in the series are suppressed by 1/𝑛5 for large 𝑛, while using 𝑦

the coefficients are suppressed only by 1/𝑛3. This fact suggests to employ 𝛿 as expansion parameter
also at higher orders in 𝛼𝑠, even if 𝑦 is the natural expansion parameter arising from the Feynman
diagrams since odd power of 𝑚𝑐 do not appear in the calculation.

3. Details of the calculation to second and third order

The asymptotic expansion described in the previous section can be applied also to higher
orders in QED. With the help of the optical theorem we can express the 𝑏 → 𝑋𝑐ℓ𝜈 matrix element
integrated over the whole phase space in terms of the discontinuity of 𝑏 → 𝑏 forward scattering
amplitudes like in Fig. 1. To calculate corrections up to 𝑂 (𝛼3

𝑠) we have to add up to three more
loops, i.e. we must consider five-loop diagrams.
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It is also possible to consider moments of the differential rate when no restriction is applied on
the final state particles. For instance, the moments of the leptonic invariant mass 𝑞2, defined by

𝑄𝑛 ≡
∫

(𝑞2)𝑛 𝑑Γsl

𝑑𝑞2 d𝑞2, (12)

are obtained by simply multiplying the integrand of forward scattering amplitude by (𝑞2)𝑛 and
proceeding with the calculation as in the case of the decay rate.

The structure of the Feynman diagrams allows the direct integration of the massless neutrino-
lepton loop which leads to an effective propagator raised to an 𝜖-dependent power. At this point
we apply the expansion by region, and consider all loop momenta to scale either hard or ultrasoft.
The all-hard region can be ignored since it contains no imaginary part. The loop integration w.r.t.
the dilepton momenta 𝑞 can be performed analytically without applying integration-by-part (IBP)
relations. In fact the momentum 𝑞 must always be ultrasoft. Integrals depending on loop momenta
other the 𝑞 which scale as hard naturally factorize out. The crucial observation is that also in case
another loop momentum is ultrasoft, one can factorize out the integration w.r.t. 𝑞 by exploiting the
linear dependence of the ultrasoft propagators on the loop momenta (for more details see [13]).
Therefore, we are able to analytically carry out the integration w.r.t. 𝑞 without the need of an
IBP reduction and we remain at most with three-loop integrals that need to be reduced to master
integrals.

After asymptotic expansion of the Feynman diagrams, we find linearly dependent propagators.
This requires a partial fraction decomposition in order to define integral families for the IBP
reduction. We employ the program LIMIT [21] to automate the partial fraction decomposition
in case of linearly dependent denominators. The master integrals for the ultrasoft regions were
computed up to three loops in [12, 13]. All triple-hard master integrals can be found in Ref. [22].

For the total rate and kinematic moments, we have computed the first 16, 11 and 8 expansion
terms in 𝛿 at order 𝛼𝑠, 𝛼

2
𝑠 , 𝛼

3
𝑠 , respectively. For the total rate this corresponds to an expansion up

to 𝛿12 since the leading term starts at 𝛿5. Such deep expansion is necessary to obtain accurate
predictions, especially for the central moments. Feynman propagators must be expanded up to 8th
or 10th order, leading to intermediate expressions of the order of several hundred GB. They must be
handled by FORM [24] in an optimized way in order to avoid an uncontrolled grow of the number of
terms. Furthermore, for some of the integral families, individual propagators are raised to positive
and negative powers up to 12, which constitutes a non-trivial task for the IBP reduction, and we had
to rely on a private version of the program FIRE [25].

4. Results at N3LO

Our main results are the analytic expressions for the corrections up to 𝑂 (𝛼3
𝑠) to the total rate,

corresponding to the functions 𝑋1,2,3(𝜌) in Eq. (1), and similarly for the kinematic moments. In
the calculation we renormalized the bottom and charm quark masses in the pole scheme.

In Fig. 2a we show the third order correction to the rate 𝑋3(𝜌) as a function of 𝜌 = 1−𝑚pole
𝑐 /𝑚pole

𝑏

where the different curves contain different expansion depths in 𝛿. One observes a rapid convergence
for values of 𝜌 close to the physical point 𝜌 ≃ 0.25. In particular, the curves including terms up to

5
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Figure 2: (Left) The 𝑂 (𝛼3
𝑠 ) coefficient to the decay rate (see Eq. (1)) as a function of 𝜌 = 𝑚

pole
𝑐 /𝑚plot

𝑏
for

different expansion depth in 𝛿. (Right) The partonic decay rate as a function of the renormalization scale 𝜇𝑠 .

𝛿10,11,12 cannot be distinguished in the plot. We estimate 𝑋3(𝜌 = 0.28) = −68.4 ± 0.3, where the
uncertainty is obtained multiplying the 𝛿12 term by a factor of five.

For phenomenological predictions one needs to express the quark masses in a short distance
scheme. We adopt the kinetic scheme for the bottom quark mass and the MS mass for the charm
quark. We also consider the 1𝑆 scheme [23] for the bottom. In this case we express the charm
quark mass via the Heavy Quark Effective Theory (HQET) relation to pole bottom quark mass and
(averaged) 𝐷 and 𝐵 meson masses. With the input values 𝑚kin

𝑏
(1 GeV) = 4.526 GeV, 𝑚1S

𝑏
= 4.666

GeV and 𝑚𝑐 (3 GeV) = 0.993 GeV, we obtain for Γ(𝑏 → 𝑋𝑐ℓ𝜈̄ℓ)/Γ0 and 𝜇𝑠 = 𝑚𝑏

𝑚kin
𝑏 , 𝑚𝑐 (3 GeV) : 0.700 (1 − 0.116 − 0.035 − 0.010) ,

𝑚1S
𝑏 , 𝑚

HQET
𝑐 : 0.555 (1 − 0.095 − 0.030 − 0.011) , (13)

where the different 𝛼𝑠 orders are displayed separately. One can observe a good behaviour of the
perturbative series, with the relative size of the third order correction being about 1%.

In Fig. 2b we show the partonic decay rate as a function of the renormalization scale 𝜇𝑠 of
𝛼𝑠 (𝜇𝑠) for the 𝑚𝑏 in the kinetic scheme and the 𝑚𝑐 in the MS scheme. One observes that over
the whole range 𝑚kin

𝑏
/4 < 𝜇𝑠 < 2𝑚kin

𝑏
the dependence on 𝜇𝑠 decreases after including higher order

corrections. At NLO the variation is of about 5.6% while at NNLO one still observes a 2.4%
variation. The inclusion of the N3LO corrections bring the residual scale uncertainty at the level of
0.8%, so well below the percent level.

Let us discuss now the impact of higher order corrections for kinematic moments, in particular
for the 𝑞2 moments. The central moments 𝑞𝑛 of the dilepton inveriant mass 𝑞2 are defined via

⟨(𝑞2)𝑛⟩ ≡ 𝑄𝑛

𝑄0
, 𝑞1 = ⟨𝑞2⟩, 𝑞𝑛>1 =

〈(
𝑞2 − ⟨𝑞2⟩

)𝑛〉
. (14)

The analytic calculation of the Feynman diagrams yields the expressions for the moments𝑄𝑛 in (12)
up to third order. To assemble central moments 𝑞𝑛, we start with the expressions for the various 𝑄𝑛

in the pole scheme considering also the power corrections up to 1/𝑚3
𝑏

and we convert them to the
kinetic scheme. In a second step, the ratios in Eq. (14) are reexpanded up to 𝛼3

𝑠 (to leading order in

6
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Figure 3: Scale dependence for the first and third central moments of 𝑞2.

1/𝑚𝑏) and up to 𝑂 (1/𝑚3
𝑏
) for the power corrections. Our results for 𝑞𝑛 ≡ 𝑞𝑛/𝑚2𝑛

𝑏
are

𝑞1 = 0.232947
[
1 − 0.0106332𝛼𝑠

− 0.007100(16)𝛼2
𝑠

− 0.00326(13)𝛼3
𝑠

− 0.0875(97)pw

]
,

𝑞2 = 0.0235256
[
1 − 0.0359328𝛼𝑠

− 0.0175591(28)𝛼2
𝑠

− 0.00677(17)𝛼3
𝑠

− 0.237(27)pw

]
,

𝑞3 = 0.00145109
[
1 − 0.0700256𝛼𝑠

− 0.030529(71)𝛼2
𝑠

− 0.01282(12)𝛼3
𝑠

− 0.726(94)pw

]
,

𝑞4 = 0.0012016
[
1 − 0.0585099𝛼𝑠

− 0.0342994(88)𝛼2
𝑠

− 0.01597(20)𝛼3
𝑠

− 0.631(77)pw

]
. (15)

For each moment we factorize out the tree-level prediction and show the size of the 𝛼𝑠, 𝛼
2
𝑠 , 𝛼

3
𝑠

corrections (denoted by 𝑋𝛼𝑛
𝑠

). The quoted uncertainties come from the finite number of terms
computed in the 𝛿 expansion. We denote the sum of all 1/𝑚2

𝑏
and 1/𝑚3

𝑏
corrections by the subscript

“pw”. Its uncertainty is based on the parametric uncertainties on the HQE parameters from the
fit of Ref. [1]. We observe a good behaviour of the perturbative series, with coefficients precisely
determined via the asymptotic expansion in 𝛿.

The size of the 𝑂 (𝛼2
𝑠) corrections are of few percent while third order corrections are about a

factor of two smaller and in the range of 0.5 - 2%. Higher power corrections are sizable and as large
as 70% of the leading order contribution for 𝑞3 and 𝑞4. In Fig. 3 we show the dependence of 𝑞1
and 𝑞3 on the renormalization scale 𝜇𝑠. For 𝑞1 dependence on 𝜇𝑠 decreases most notably only after
inclusion of the third order corrections, from a 3.7% variation at NNLO to a 2.5% at N3LO. Also
for 𝑞3 the scale variation is of 1.7%, 1.6% at NLO and NNLO, while it reduces to 1% at N3LO.

5. Conclusions

We reviewed the calculation of the third order QCD corrections for the decay rate of 𝑏 → 𝑋𝑐ℓ𝜈̄ℓ

and its kinematic moments (without cuts). The results are obtained by performing an asymptotic
expansion in 𝛿 = 1 − 𝑚𝑐/𝑚𝑏. Even if the parameter is rather large for physical values of 𝑚𝑐 and
𝑚𝑏 (𝛿 ≃ 0.7), the series provides an excellent approximation for phenomenological studies. The
size of the 𝑂 (𝛼3

𝑠) corrections are of the order of 1% when considering a short mass scheme for
the bottom quark mass, e.g. kinetic or 1S mass. Similar behaviours are observed for the 𝑞2 central
moments, with residual scale dependence ranging between 2% and 1% depending on the order of
the moment.
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