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1. Introduction

Scattering amplitudes in QFT serve as a bridge between theory and experiment. QCD compu-
tations in particular are essential for the increasingly precise measurements of the parameters of the
Standard Model and provide stringent constraints for searches of New Physics. In addition, the com-
putation of new scattering amplitudes adds to our understanding of the more general mathematical
structures hiding in QFT.

As the number of external particles and of internal loops grows, so does the complexity of the
calculation. Up until a couple years ago, the state of the art for massless four particle scattering was
the three-loop four-gluon amplitude in 𝑁 = 4 Super Yang Mills (SYM) presented in [1]. Extensions
to QCD or other less supersymmetric theories, where some of the simplifications due to the (dual)
conformal symmetry of 𝑁 = 4 are absent, were not possible.

The first analytic results for a QCD three-loop four-point amplitude were obtained for the
process 𝑞𝑞 → 𝛾𝛾 and presented in [2]. Building on this, we review the calculations presented
in [3–5], where the computation of all four-parton channels up to three-loops in full QCD was
tackled for the first time. The presence of four colored particles in the external states allows for
more complex interactions, involving long range exchanges of color charge between initial and final
state. This in turn dictates a richer structure, especially starting a three-loops, where the so-called
quadrupole interactions turn on.

2. Definitions

In the following we focus on interactions relevant for QCD, however the techniques described
below can be applied to massless gauge theories with different field contents.
We consider the processes

𝑔(𝑝1) + 𝑔(𝑝2) + 𝑔(𝑝3) + 𝑔(𝑝4) → 0,
𝑞(𝑝1) + 𝑞(𝑝2) + 𝑔(𝑝3) + 𝑔(𝑝4) → 0,
𝑞(𝑝1) + 𝑞(𝑝2) + �̄�(𝑝3) +𝑄(𝑝4) → 0, (1)

where 𝑞 and 𝑄 represent quarks with different flavours.
All momenta are incoming and massless

𝑝
𝜇

1 + 𝑝
𝜇

2 + 𝑝
𝜇

3 + 𝑝
𝜇

4 = 0, 𝑝2
𝑖 = 0 (2)

and we define the set of Mandelstam invarian

𝑠 = (𝑝1 + 𝑝2)2, 𝑡 = (𝑝1 + 𝑝3)2, 𝑢 = (𝑝2 + 𝑝3)2, (3)

which satisfy the relation 𝑢 = −𝑡− 𝑠. The physical 2 → 2 scattering processes correspond to (1)
after the crossing 𝑝3,4 →−𝑝3,4 has been performed. In terms of the dimensionless ratio 𝑥 = −𝑡/𝑠
the physical scattering is associated to the region

0 < 𝑥 < 1. (4)

In the following, ultraviolet (UV) and infrared (IR) divergences are regulated in dimensional
regularization. In particular, we choose to work in the ’t Hooft-Veltman scheme (tHV) [6].
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3. Decomposition in Color and Lorentz Space

Scattering amplitudes involving colored particles in the external states carry color indices and
therefore are tensors in color space. The particular space we work in is determined by the external
states involved in the interaction. By choosing a basis of this tensor space, one can decompose the
amplitudes for the processes (1) as follows

A𝑎1𝑎2𝑎3𝑎4
𝑔𝑔→𝑔𝑔 = 4𝜋𝛼𝑠,𝑏

6∑︁
𝑖=1

A [𝑖 ]
4𝑔 C

4𝑔
𝑖

,

A𝑖1𝑖2𝑎3𝑎4
𝑞�̄�→𝑔𝑔

= 4𝜋𝛼𝑠,𝑏

3∑︁
𝑖=1

A [𝑖 ]
𝑞𝑔C𝑞𝑔

𝑖
,

A𝑖1𝑖2𝑖3𝑖4
𝑞�̄�→�̄�𝑄

= 4𝜋𝛼𝑠,𝑏

2∑︁
𝑖=1

A [𝑖 ]
4𝑞 C

4𝑞
𝑖

, (5)

where 𝛼𝑠,𝑏 is the bare strong coupling, 𝑎𝑛(𝑖𝑛) stands for a 𝑆𝑈 (𝑁𝑐) index in the adjoint(fundamental)
representation, A [𝑖 ] are color-ordered partial amplitudes, and possible choices for the color basis
elements {C𝑋

𝑖
} reads

C4𝑔
1 = Tr[𝑇𝑎1𝑇𝑎2𝑇𝑎3𝑇𝑎4] + Tr[𝑇𝑎1𝑇𝑎4𝑇𝑎3𝑇𝑎2], C4𝑔

4 = Tr[𝑇𝑎1𝑇𝑎2]Tr[𝑇𝑎3𝑇𝑎4],

C4𝑔
2 = Tr[𝑇𝑎1𝑇𝑎2𝑇𝑎4𝑇𝑎3] + Tr[𝑇𝑎1𝑇𝑎3𝑇𝑎4𝑇𝑎2], C4𝑔

4 = Tr[𝑇𝑎1𝑇𝑎2]Tr[𝑇𝑎3𝑇𝑎4],

C4𝑔
3 = Tr[𝑇𝑎1𝑇𝑎3𝑇𝑎2𝑇𝑎4] + Tr[𝑇𝑎1𝑇𝑎4𝑇𝑎2𝑇𝑎3], C4𝑔

6 = Tr[𝑇𝑎1𝑇𝑎4]Tr[𝑇𝑎2𝑇𝑎3],

C𝑞𝑔

1 = (𝑇𝑎3𝑇𝑎4)𝑖2𝑖1 , C𝑞𝑔

2 = (𝑇𝑎3𝑇𝑎4)𝑖2𝑖1 , C𝑞𝑔

3 = 𝛿𝑎3𝑎4 𝛿𝑖2𝑖1 ,

C4𝑞
1 = 𝛿𝑖1𝑖4𝛿𝑖2𝑖3 , C4𝑞

2 = 𝛿𝑖1𝑖2𝛿𝑖3𝑖4 . (6)

Here𝑇𝑎
𝑖 𝑗

are the fundamental 𝑆𝑈 (𝑁𝑐) generators, normalized by Tr[𝑇𝑎𝑇𝑏] = 1
2𝛿

𝑎𝑏. The advantages
of this color decomposition are two-fold. The partial amplitudes A [𝑖 ] are (a) independently gauge
invariant and (b) not independent under exchanges of external momenta. In fact, one can perform the
Feynman-diagrammatic computation only for the partial amplitudes which are independent under
crossings of the external momenta and obtain the rest only at the end. For the processes above,
this means one can restrict the computation to just A [1]

4𝑔 ,A [4]
4𝑔 ,A [1]

𝑞𝑔 ,A [3]
𝑞𝑔 ,A [1]

4𝑞 ,A [2]
4𝑞 . In order to

compute the set of independent partial amplitudes, we further decompose them in Lorentz (or spin)
space. In particular, invoking the definition of the tHV scheme, which fixes the external states in
four space-time dimensions, one can project the partial amplitudes on a set of tensors which are
independent of the loop-momenta and are a subset of the ones needed in conventional dimensional
regularization (CDR) (see [7, 8] for details). In tHV the decomposition reads

A [ 𝑗 ]
4𝑔 =

8∑︁
𝑖=1

F [ 𝑗 ]
4𝑔,𝑖 𝑇

4𝑔
𝑖
, A [ 𝑗 ]

𝑞𝑔 =

4∑︁
𝑖=1

F [ 𝑗 ]
𝑞𝑔,𝑖

𝑇
4𝑔
𝑖
, A [ 𝑗 ]

4𝑞 =

2∑︁
𝑖=1

F [ 𝑗 ]
4𝑞,𝑖 𝑇

4𝑞
𝑖

, (7)
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where the functions F [ 𝑗 ]
𝑋,𝑖

are called form factors and the tensors 𝑇𝑋
𝑖

are defined as

𝑇
4𝑔
1 = 𝜖1 ·𝑝3 𝜖2 ·𝑝1 𝜖3 ·𝑝1 𝜖4 ·𝑝2,

𝑇
4𝑔
2 = 𝜖1 ·𝑝3 𝜖2 ·𝑝1 𝜖3 ·𝜖4, 𝑇

4𝑔
3 = 𝜖1 ·𝑝3 𝜖3 ·𝑝1 𝜖2 ·𝜖4,

𝑇
4𝑔
4 = 𝜖1 ·𝑝3 𝜖4 ·𝑝2 𝜖2 ·𝜖3, 𝑇5 = 𝜖2 ·𝑝1 𝜖3 ·𝑝1 𝜖1 ·𝜖4,

𝑇
4𝑔
6 = 𝜖2 ·𝑝1 𝜖4 ·𝑝2 𝜖1 ·𝜖3, 𝑇

4𝑔
7 = 𝜖3 ·𝑝1 𝜖4 ·𝑝2 𝜖1 ·𝜖2,

𝑇
4𝑔
8 = 𝜖1 ·𝜖2 𝜖3 ·𝜖4 + 𝜖1 ·𝜖4 𝜖2 ·𝜖3 + 𝜖1 ·𝜖3 𝜖2 ·𝜖4,

𝑇
𝑞𝑔

1 = �̄�(𝑝2)/𝜖3𝑢(𝑝1) 𝜖4 ·𝑝2 , 𝑇
𝑞𝑔

2 = �̄�(𝑝2)/𝜖4𝑢(𝑝1) 𝜖3 ·𝑝1,

𝑇
𝑞𝑔

3 = �̄�(𝑝2)/𝑝3𝑢(𝑝1) 𝜖3 ·𝑝1 𝜖4 ·𝑝2, 𝑇
𝑞𝑔

4 = �̄�(𝑝2)/𝑝3𝑢(𝑝1) 𝜖3 ·𝜖4,

𝑇
4𝑞
1 = �̄�(𝑝2)𝛾𝛼𝑢(𝑝1)�̄�(𝑝4)𝛾𝛼𝑢(𝑝3) , 𝑇

4𝑞
2 = �̄�(𝑝2)/𝑝3𝑢(𝑝1)�̄�(𝑝4)/𝑝2𝑢(𝑝3) . (8)

Above, 𝜖 (𝑝𝑖) = 𝜖𝑖 stands for the polarization vector of the 𝑖-th external gluon, which satisfies the
transversality condition 𝜖𝑖·𝑝𝑖 = 0. To obtain the tensor bases above we also gauge fixed the external
gluons in the following way:

𝑔𝑔 → 𝑔𝑔 : 𝜖1 · 𝑝2 = 𝜖2 · 𝑝3 = 𝜖3 · 𝑝4 = 𝜖4 · 𝑝1 = 0,
𝑞𝑞 → 𝑔𝑔 : 𝜖3 · 𝑝2 = 𝜖4 · 𝑝1 = 0. (9)

Given the definition of the Lorentz tensors 𝑇𝑋
𝑖

above, one can obtain the form factors by introducing
a set of 𝑃𝑋

𝑖
, one for each tensor, so that

∑
𝑝𝑜𝑙 𝑃

𝑋
𝑖
𝑇𝑋
𝑗

= 𝛿𝑖 𝑗 . The projectors 𝑃𝑋
𝑖

are obtained (see
[7, 8] for a more thorough description) as

𝑃𝑋
𝑖 =

∑︁
𝑗

(𝑀−1)𝑋𝑖 𝑗𝑇𝑋
𝑗

†
, (10)

where the matrix 𝑀𝑖 𝑗 is defined by

𝑀𝑖 𝑗 =
∑︁
𝑝𝑜𝑙

𝑇𝑋
𝑖

†
𝑇𝑋
𝑗 . (11)

The form factors F [ 𝑗 ]
𝑋,𝑖

, obtained by applying the projectors 𝑃𝑋
𝑖

on the amplitudes of the correspond-
ing processes, are Lorentz invariant and carry no color indices. However, in addition to kinematics,
they also depend on the size of the gauge group 𝑁𝑐 and the number of active quark flavours 𝑛 𝑓 .
Schematically, each form factor can be written as

𝐹
[ 𝑗 ]
𝑋,𝑖

=
∑︁
𝑛,𝑚

𝑓
[ 𝑗 ], (𝑛,𝑚)
𝑋,𝑖

(𝑠, 𝑡) 𝑁𝑛
𝑐 𝑛

𝑚
𝑓 , (12)

where the functions 𝑓
[ 𝑗 ], (𝑛,𝑚)
𝑋,𝑖

are independently gauge invariant and only depend on the kinematics.
Since any cancellation of gauge-dependent terms must happen within these functions, this extra
decomposition of the amplitudes allows one to further parallelize the computation.
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4. Helicity Amplitudes

In the computation of scattering amplitudes, one wishes to express everything in terms of
physical building blocks, which are ultimately expected to be the simplest objects. So far we
reduced the computation of gauge theory scattering amplitudes to the evaluation of scalar form
(and color) factors. A more physical set of quantities are the helicity amplitudes A𝝀 , 𝑖.𝑒. scattering
amplitudes where the helicities of the external states are fixed to 𝝀 = {𝜆1, 𝜆2, 𝜆3, 𝜆4}. Because we
work in tHV, the number of parity-independent helicity amplitudes for each process in (1) is equal
to the dimension of the corresponding tensor basis in (8). Indeed, the parity-independent helicity
configurations for the processes (1) are

𝑔𝑔 → 𝑔𝑔 : {+ + ++}, {− + ++}, {+ − ++}, {+ + −+}, {+ + +−}, {+ + −−}, {+ − +−}, {+ − −+},
𝑞𝑞 → 𝑔𝑔 : {− + −−}, {− + −+}, {− + +−}, {− + ++},
𝑞𝑞 → �̄�𝑄 : {+ − +−}, {+ − −+} (13)

and any helicity amplitude corresponding to one of these configurations can be written as a linear
combination of the form factors defined above. To make this more explicit, we use the spinor-
helicity formalism [9] to fix the helicities of the external gluons and quarks. In our conventions, the
fixed-helicity gluon and quark polarization vectors take the form

𝜖
𝜇

𝑖,+ =
[𝑞𝑖 |𝛾𝜇 |𝑖⟩
√

2[𝑖 |𝑞𝑖]
, 𝜖

𝜇

𝑖,− =
[𝑖 |𝛾𝜇 |𝑞𝑖⟩√

2⟨𝑞𝑖 |𝑖⟩
, 𝑢+𝑖 = |𝑖⟩, 𝑢−𝑖 = |𝑖], �̄�+𝑖 = ⟨𝑖 |, �̄�−𝑖 = [𝑖 |, (14)

where the gluon reference momenta 𝑞𝑖 are implied by the gauge choices specified in (9). Plugging
eq. (14) in eq. (7) and stripping out an overall helicity-dependent spinor factor 𝑠𝝀 , we can write the
color-ordered partial amplitudes as

A [𝑖 ]
𝝀 = H [𝑖 ]

𝝀 𝑠𝝀 , (15)

where we omitted the process dependence for clarity. The spinor-stripped helicity amplitudes H [𝑖 ]
𝝀

can then be written as linear combinations of the form factors F [ 𝑗 ]
𝑖

, where the coefficients are
rational functions of 𝑠, 𝑡 and 𝑑.

Having identified the H [𝑖 ]
𝝀 as "physical" quantities, we can now compute them perturbatively.

Details on the computation of the 𝑔𝑔 → 𝑔𝑔, 𝑞𝑞 → 𝑔𝑔 and 𝑞𝑞 → �̄�𝑄 channels up to three loops
can be found on [3–5]. To sum up, there are two major bottlenecks in these computations: (1)
performing the Dirac and color algebra arising from Feynman diagrams; (2) reducing the large
number of Feynman integrals (𝑂 (107) for 𝑔𝑔 → 𝑔𝑔) to a basis of master integrals and subsequently
including of the integration-by-parts (IBPs) identities in the amplitude. The amplitude decomposi-
tions discussed in Section 3 allow one to perform the steps above on smaller independent building
blocks, making the computation more manageable.

Analytic expressions for the master integrals involved up to three loops are available [10, 11]
as a Laurent series in 𝜖 up to O(𝜖0) in terms of HPLs up to transcendental weight six and can be
inserted in the expressions for the bare helicity amplitudes obtained from Feynman diagrams.

5



P
o
S
(
L
L
2
0
2
2
)
0
2
2

Three-Loop Four-Point Scattering Amplitudes in Massless Gauge Theories Giulio Gambuti

5. The IR structure

After renormalization, the helicity amplitudes contain only IR divergencies, which appear as
poles in the series expansions of the dimensional regulator 𝜖 , and depend on the renormlization scale
𝜇. Up to three loops, one can factorize the IR physics from the hard scattering and write [12–20]

H𝝀, ren = Z𝐼𝑅 H𝝀, fin , (16)

where Z𝐼𝑅 is a color matrix that acts on the color basis {C𝑋
𝑖
} (6) and can be written in exponential

form in terms of the soft anomalous dimension 𝚪 = 𝚪dip + 𝚫4 as

Z𝐼𝑅 = exp
[∫ ∞

𝜇

d𝜇′

𝜇′ 𝚪({𝑝}, 𝜇
′)
]
. (17)

Above, the dipole term 𝚪dip is associated to a long-range pairwise exchange of color charge between
external legs (see Figure 1) and explicitly reads

𝚪dip =
∑︁

1≤𝑖< 𝑗≤4
T𝑎
𝑖 T𝑎

𝑗 𝛾
K ln

(
𝜇2

−𝑠𝑖 𝑗 − 𝑖𝛿

)
+
∑︁
𝑖

𝛾𝑖 , (18)

where 𝑠𝑖 𝑗 = 2𝑝𝑖 · 𝑝 𝑗 , 𝛾K is the cusp anomalous dimension [21–27] and 𝛾𝑖=𝑔,𝑞 is the gluon(quark)
anomalous dimension [28–31].

Figure 1: Sample diagram contributing to the dipole matrix 𝚪dip for the process 𝑔𝑔 → 𝑔𝑔. The gluon in red
is to be thought of as a soft gluon being exchanged by the hard legs (in black).

The quadrupole matrix 𝚫4 is instead due to exchanges of color charge among (up to) four
external legs (see Figure 2) and it starts playing a role at three loops, where we only need the first
order in its perturbative expansion 𝚫4 =

∑∞
𝑛=3 �̄�

𝑛
𝑠𝚫

(𝑛)
4 . This reads [20]

𝚫(3)
4 = 𝑓𝑎𝑏𝑒 𝑓𝑐𝑑𝑒

[
− 16𝐶

4∑︁
𝑖=1

∑︁
1≤ 𝑗<𝑘≤4

𝑗 ,𝑘≠𝑖

{
T𝑎
𝑖 ,T

𝑑
𝑖

}
T𝑏

𝑗 T
𝑐
𝑘

+ 128
[
T𝑎

1 T𝑐
2T𝑏

3 T𝑑
4 𝐷1(𝑥) − T𝑎

4 T𝑏
1 T𝑐

2T𝑑
3 𝐷2(𝑥)

] ]
, (19)

with 𝐶 = 𝜁5 + 2𝜁2𝜁3 and the functions 𝐷1(𝑥) and 𝐷2(𝑥) can be found in [3–5].
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Figure 2: Sample diagrams contributing to the quadrupole matrix 𝚫(3)
4 for the process 𝑔𝑔 → 𝑔𝑔. Gluons in

red are to be thought of as soft gluons being exchanged by the hard legs (in black).

In the formulas above, T𝑎
𝑖

represents the color generator of the 𝑖-th parton in the scattering
amplitude:

(T𝑎
𝑖 )𝛼𝛽 = 𝑡𝑎𝛼𝛽 for a final(initial)-state quark (anti-quark),

(T𝑎
𝑖 )𝛼𝛽 = −𝑡𝑎𝛽𝛼 for a final(initial)-state anti-quark (quark),

(T𝑎
𝑖 )𝑏𝑐 = −𝑖 𝑓 𝑎𝑏𝑐 for a gluon. (20)

The computations presented here and in [3–5] allowed us to verify up to three loops the structure
of IR singularities in QCD predicted by the equations above. This provides a highly non-trivial
check of our results and of the techniques described here.

6. High Energy Limit and the Gluon Regge trajectory

Analytic results for the processes (1) up to three loops allow us to directly compute the high-
energy limit of their amplitudes and peak into the all-orders structure of QCD. Employing the
analytic continuation procedure described in [5], we can obtain the scattering amplitudes for the
processes

𝑔(𝑝1) + 𝑔(𝑝2) → 𝑔(𝑝3) + 𝑔(𝑝4),
𝑞(𝑝1) + 𝑔(𝑝2) → 𝑞(𝑝3) + 𝑔(𝑝4),
𝑞(𝑝1) +𝑄(𝑝2) → 𝑞(𝑝3) +𝑄(𝑝4), (21)

from the ones described in the previous Sections. At tree level, the processes in (21) are mediated
by a gluon exchange and exhibit interesting factorization properties in the limit |𝑠 | ≈ |𝑢 | ≫ |𝑡 |, or
equivalently 𝑥 → 0. This is the so called Regge limit. To describe the physics in this kinematical
region, it is convenient to introduce amplitudes which have definite signature under 𝑠 ↔ 𝑢 exchange:

Hren,± =
1
2
[Hren(𝑠, 𝑢) ± Hren(𝑢, 𝑠)] . (22)

It is also practical to write the logarithmic components of the Regge-limit amplitudes in terms of
the signature-even combination of logarithms

𝐿 = − ln(𝑥) − 𝑖𝜋

2
≈ 1

2

(
ln

(
−𝑠 − 𝑖𝛿

−𝑡

)
+ ln

(
−𝑢 − 𝑖𝛿

−𝑡

))
. (23)
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At leading power in 𝑥 and next-to-leading logarithmic (NLL) accuracy (in powers of 𝐿), the odd
amplitude has a nicely factorized form: to all orders in the strong coupling, Hren,− can be thought
of as the amplitude for the exchange of a single “reggeized” 𝑡-channel gluon, whose interactions
with the external high-energy partons are encoded by so-called impact factors [32–36]. This single-
particle exchange is referred to as the “Regge-pole” contribution to the high-energy limit amplitude
and is described by the gluon Regge trajectory 𝜏𝑔 =

∑
𝑛=1 �̄�

𝑛
𝑠 𝜏𝑛.

Beginning at next-to-next-to-leading logarithmic (NNLL) accuracy, the factorisation of the
odd amplitude is broken by the appearance of multiple Reggeon exchanges between the external
projectiles [36–43], which are usually referred to as the “Regge-cut” contributions. With the
appearance of Regge-cuts alongside the Regge-pole, it becomes non-trivial to disentagle the two
contributions. This issue was described in [43], where a scheme for separating the two was also
presented.

The three-loop calculations presented here and in [3–5] allowed us to compute the last missing
ingredient for the characterization of the signature even/odd amplitudes at NLL/NNLL, 𝑖.𝑒. the three
loop Regge trajectory, and check Regge factorisation to this accuracy across all partonic channels
for 2 → 2 scattering in QCD.

7. Conclusion

We described the techinques used for the first computation of helicity amplitudes for the scat-
tering of four partons up to three loops in full QCD. The methods described are applicable to
2 → 2 scattering processes in any massless gauge theory. We reviewed the IR factorization and
its practical application to the regularization of these scattering amplitudes, with emphasis on the
color quadrupole radiation contribution to the IR anomalous dimension matrix, which we were able
to check by direct calculation. We also touched on the Regge limit of these amplitudes, from where
we extracted the three-loop Regge trajectory, unlocking the NNLL description of single-Reggeon
exchanges in QCD.
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