PROCEEDINGS

OF SCIENCE

Loop integral evaluation and asymptotic expansion with
pySecDEc

Vitaly Magerya
Institute for Theoretical Physics, Karlsruhe Institute of Technology,
Wolfgang-Gaede-Str. 1, Geb. 30.23, 76131 Karlsruhe, Germany

E-mail: vitalii.maheria@kit.edu

pySEcDEC is a computer program that evaluates arbitrary multi-loop Feynman integrals numer-
ically as expansions in the dimensional regulator based on the sector decomposition approach.
In the recent release version 1.5 pySeEcDEc introduces asymptotic expansion in the kinematic
ratios using the method of expansion by regions, and an automatic adaptive evaluation of weighted
sums of integrals (e.g. amplitudes). In this article we discuss how these features work, and what
performance benefits they bring.

Loops and Legs in Quantum Field Theory - LL2022,
25-30 April, 2022
Ettal, Germany

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:vitalii.maheria@kit.edu
https://pos.sissa.it/

Loop integral evaluation and asymptotic expansion with pySEcDEc

1. Introduction

A key part in increasing the accuracy of theoretical predictions to match the experimental
accuracy of LHC and beyond is the calculation of higher-loop Feynman integrals. Already at LHC
2-loop QCD corrections are required, with future colliders demanding 3-loop QCD and mixed
QCD-electroweak corrections [1], which means that 2- and 3-loop integrals with masses are of
practical interest. This poses a big challenge to the analytical methods of calculating loop integrals,
and there are classes of integrals that are needed for phenomenological calculations but are not fully
known analytically (such as the massive 2-loop 5-point functions).

The proposed solution is to move away from the analytical, and instead use numerical methods
such as sector decomposition [2, 3] as implemented in pySEcDEc [4-6] and Fiesta [7], and Mellin-
Barnes integration [8—10], or semi-analytical methods such as solving the differential equations for
master integrals numerically [11-13], as implemented in e.g. DirFFExp or AMFLow. The limiting
factor of the latter family of methods is the need to compute symbolic solutions to integration-
by-parts (IBP) relations for the master integrals at least in one variable, whereas the former two
approaches do not rely on IBP and instead are limited by the numerical properties of the integrands.
In other words, none of these methods can fully replace the others; in fact they can be used
complementary, as it is in the case of using sector decomposition to derive boundary conditions for
differential equations.

Here we shall concentrate on pySecDEc and sector decomposition. pySecDEec has a long
history; it has started as a Python-based successor to the Mathematica code SEcDEc [14-16]. The
current pySEcDEC is written in Python and C++, and is developed on GitHub!, where one can
find the source code, the installation instructions, and the issue tracker. Recently version 1.5 of
pySEcDEC was released bringing a number of usability improvements such as

* simplified installation via the Python package installer> aspip3 install --user pySecDec,
with all the required dependency software built and installed automatically;

e automatic adjustment of the contour deformation parameters, which means that users no
longer need to manually fix “sign check errors”;

* automatic adjustment of the WorkSpace parameter of Form [17], which means that users no
longer need to manually fix “workspace overflow” errors.

More importantly, version 1.5 comes with two major new features targeted at improving
pySEcDEC performance:

* an implementation of the expansion-by-regions method of the asymptotic expansion of inte-
grals in kinematic invariants to help with e.g. high-energy regions;

* adaptive sampling of weighted sums of integrals (i.e. amplitudes).

A more detailed description and usage examples can be found in [6]; here we shall only briefly
describe how these features work, and what performance benefits should be expected from them.

thttps://github.com/gudrunhe/secdec
2https://pypi.org/project/pySecDec

https://github.com/gudrunhe/secdec
https://pypi.org/project/pySecDec

Loop integral evaluation and asymptotic expansion with pySEcDEc

Diagram \Relative precision 10—3 10—4 10—5 10—6 10—7 10—8

am ., GPU 15s 20s 40s 200s 13m 50m

CPU 10s 50s 400s 4000s 180m 1200m
o I GPU 18 19s 30s 20s 12m 2m
~——" CPU 5s 145 60s 50s 12m 16m

s ﬁ *_ ., GPU 6s 11s 12s 30s 3m 24m

" CPU 55 10s 50s 800s 60m 800m
Table 1: pySecDEec 1.5.3 integration time with the Qmc integrator for a few massive 3-loop electroweak
self-energy integrals taken from [18]. The CPU is AMD Epyc 7302 with 32 threads; the GPU is NVidia A100.

2. The expected performance

When used in the recommended configuration pySEcDEc can deliver precision sufficient for
practical purposes in seconds to minutes; for example see the integration times for a selection of
3-loop massive integrals in Table 1. This recommended configuration consists of:

1. Using the Qmc integrator [5], as opposed to the more well known integrators like Vegas
(which pySecDEc also supports). This is because Qmc implements the Randomized Quasi
Monte-Carlo integration using rank-1 lattice rules [19] specifically constructed so that if the
integrand is smooth enough then the precision of the result is guaranteed to scale with the
number of integrand evaluations as 1/N 2 while the classical Monte-Carlo techniques, even
the advanced ones such as Vegas, scale as 1/VN. See Figure 1 for a comparison of the scaling
for an example integral. Note that the scaling Qmc achieves is not exactly 1/N?: in practice
depending on the integrand we see everything from 1/N to 1/N? (as it is for e.g. the second
integral in Table 1).

2. Using a GPU, preferably a server-grade one. Our testing shows that a single server-grade
CPU (e.g. a 32-thread AMD Epyc 7302) is typically as powerful as a top consumer-grade
GPU (e.g. an NVidia RTX 2080 Ti), and a server-grade GPU (e.g. NVidia A100) is 10x
faster than that, so GPUs provide a more cost-effective way of running numerical integration.

Even in the recommended configuration, some integrals will converge slowly. See for example
Table 2: four very similar integrals have wildly different integration times. For this reason we
advise spending additional time on evaluating the choice of the integrals passed to pySecDEc.

While we lack a general recipe, we have found that integrals with a negative power of the U
polynomial in the Feynman parametrization converge especially slowly; same for those with the F’
polynomial power lower than —2. If possible these should be avoided, and quasi-finite integrals
should be preferred (see e.g. [20]).

A different source of performance problems are extreme kinematics: if an integral depends on
multiple scale ratios, the more extreme (i.e. big or small) the ratios get, the longer the integration
time will become. See Figure 2 for an illustration. The reason is that in this case the majority of the

Loop integral evaluation and asymptotic expansion with pySEcDEc

N

o
IS

/

L e

1076 3 e

Relative integration error

107 4

L R N R S

T T T
10 102 10°
Integration time, s

Figure 1: Integration time scaling for the depicted integral using Monte Carlo (Vegas) and Randomized
Quasi Monte Carlo (Qmc) with pySecDEc version 1.5.3 on an NVidia A100 GPU.

Integral ~ Expansion orders Integration time

%IZ[g3,....&° 27s
e2...,& 57s
4" g2, . 1230s
<ﬂ £2... 0 >9000s

Table 2: Integration time (to 1073 precision on an NVidia A100 GPU with pySecDEc 1.5.3) of a set of
similar integrals, different only in the position of the squared (dotted) propagator.

integral’s value becomes progressively concentrated in a smaller region of the integration space,
and more integrand evaluations are needed to sample this small space precisely. To solve this, one
can try to series-expand the integrand in the extreme ratio, taking it out from the integrand. This
brings us to the first major new feature of pySecDEec 1.5: asymptotic expansion.

3. Asymptotic expansion

Expanding an integral in a small parameter may not be as simple as Taylor-expanding the
integrand. For example, consider the following integral dependent on a small parameter ¢ and some
constants a, b, ¢, d, «:

1
I= / P%(x)dx, P =ax® + btx + ct’ + di’x*. €))
0

2 2,2
Representing P simply as ax? (l + wt) and series-expanding the bracket is not a

valid procedure in the whole integration space, because in the region where x < ¢ the value of

Loop integral evaluation and asymptotic expansion with pySEcDEc

-—+- standard pySecDec Pt PR S P P
—e— expansion by regions ,
102 ,*/

,,
t, min

10°

10° 10! 10? 10° 104 10° 10°
m2/s

Figure 2: Time to evaluate the depicted integral to 3 digits of precision depending on the m?/s ratio. The
integration time is capped at 5 hours, and when m?/s > 3000 the precision target can not be reached in time.

4. X exponent

X ~ tl/Z’ P~ l3/2, I~ t3/2(1/+1/2
x~12, P~1, [~pat2

t exponent
3
t

~.
..

Figure 3: The Newton polytope of the polynomial P from eq. (1).

%t is not small. Instead we can split the integration space into a set of regions such that
the integration variables are of the order of a particular power of the small parameter ¢ in each
region. Once this is done, figuring out which terms of P are small in each regions is easy, and the
corresponding Taylor expansions are valid.

This method is expansion by regions [21]. A geometric formulation of it is given in [22]: if
we plot the monomials of P and form its Newton polytope as in Figure 3, then each facet of the
polytope pointing in a positive direction defines a region where expansion must be performed. For
example, for I we find two required regions:

1/2

1. Aregion where x ~ ¢t

ct3+d3x2
ax3+btx

, and P can be expanded as (ax® + btx) (1 +

1+ ax3+dt3x2)

2. Aregion where x ~ 2, and P can be expanded as (btx + ct?) (bixtctd

As explained in [22], all other possible regions can be ignored, as their contribution turns out
to be zero. In fact, after we have determined the regions and Taylor-expanded in each, we can
forget that the integration space was split into regions, and integrate each expansion in the whole
integration space: the contribution of the additional integration space parts also turn out to be zero.

Note that in the above example Taylor expansion in the first region is only valid if a, b > 0, and
in the second only if b, ¢ > 0: otherwise there are values of x for which the terms after 1+ are not
small. In general expansion by regions only works if the coefficients in front of the monomials of P

Loop integral evaluation and asymptotic expansion with pySEcDEc

GPU (NVidia A100 40GB) CPU (AMD Epyc 7302, 32 threads)

t, hours
t, hours

T T T T
V14 V1.5 v15.3 wip V14 V1.5 V153 wip wip+
avx2

Figure 4: Integration time of the first diagram from Table 1 to 7 digits of precision by pySecDEc version.
Here wip stands for the work-in-progress code to be released in the future, and avx2 stands for compilation
with AVX2 and FMA processor instruction sets allowed (the wip code has special provisions to use them).

are positive. This limits the applicability of the method a bit; in practice this usually means that an
expansion is possible in a high-energy region, but may not be possible around a threshold.

Expansion by regions was previously implemented in Asy.m [23] and Asy2.m [24], which is
currently a part of Fiesta. As of version 1.5 pySecDEc provides the function loop_regions()
that expands a given loop integral by regions; the result of it can be directly turned into a standard
pySecDEc integration library, or inspected for further processing.

4. Adaptive sampling of amplitudes

The other major new improvement in pySecDEc 1.5 is the adaptive sampling of weighted sums
of integrals (i.e. amplitudes). The basic idea is simple: if one wants to evaluate a sum like

1000 <~ + 10 <> + 1 OO, ()

then it makes sense to spend more time on sampling the first integral as it has the largest contribution
to the sum, and spend little time on the last one: this way more precision for the sum can be achieved
within the same integration time.

This is why pySecDEc 1.5 comes with a function sum_package () that takes a list of integrals
and a matrix of coefficients, and produces an integration library to integrate the specified weighted
sums. During the integration the optimal sampling distribution will then be automatically deter-
mined based on how big the coefficients of the integrals are, how well they converge, and how fast
their integrands can be evaluated. Moreover, by default pySEcDEC uses the same technique for
single integrals too: because during sector decomposition an integral is split into a sum of sectors,
the evaluation of this sum can be similarly optimized.

To see how much improvement this makes, take a look at at the performance progression of
pySEcDEC versions depicted in Figure 4. The big jump from version 1.4 to 1.5 is mainly due to
adaptive sum sampling—even though only a single integral is evaluated here.

Note that this technology is not new, and pySecDEc equipped with it has previously been
successfully used in multiple 2-loop calculation such as [25-27].

Loop integral evaluation and asymptotic expansion with pySEcDEc

5. Conclusions

The recently released pySeEcDEC version 1.5 comes with two major new features: an implemen-
tation of asymptotic expansion of integrals and automatic adaptive sampling of the weighted sums
of integrals (i.e. amplitudes). The first provides an essential tool in handling extreme kinematics
(e.g. high-energy regions). The second one brings a major speedup in the evaluation of single
integrals and allows using pySecDEc to evaluate whole amplitudes optimally.

Following the release, the pySEcDEC team continues incrementally improving its performance
and usability, hoping to make it applicable to even more challenging integrals, and to establish it as
a tool for evaluations of whole amplitudes.

Acknowledgements

This research was supported in part by the COST Action CA16201 (“Particleface”) of the Eu-
ropean Union and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under grant 396021762 (TRR 257).

References

[1] A. Freitas, Theory Needs for Future e*e™ Colliders, Acta Phys. Polon. B 52 (2021) 929.

[2] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent
multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013].

[3] G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [0803.4177].

[4] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones et al., pySecDec: a toolbox for the numerical
evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [1703.09692].

[5] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones et al., A GPU compatible quasi-Monte Carlo
integrator interfaced to pySecDec, Comput. Phys. Commun. 240 (2019) 120 [1811.11720].

[6] G. Heinrich, S. Jahn, S.P. Jones, M. Kerner et al., Expansion by regions with pySecDec,
Comput. Phys. Commun. 273 (2022) 108267 [2108.10807].

[7] A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTAS: numerical high-performance
Feynman integral evaluation, 2110.11660.

[8] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.
Commun. 175 (2006) 559 [hep-ph/0511200].

[9] J. Gluza, K. Kajda and T. Riemann, AMBRE: A Mathematica package for the construction of
Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun. 177 (2007)
879 [0704.2423].

[10] J. Usovitsch, I. Dubovyk and T. Riemann, MBnumerics: Numerical integration of
Mellin-Barnes integrals in physical regions, PoS LL1.2018 (2018) 046 [1810.04580].

https://doi.org/10.5506/aphyspolb.52.929
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://doi.org/10.1142/S0217751X08040263
https://arxiv.org/abs/0803.4177
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://doi.org/10.1016/j.cpc.2021.108267
https://arxiv.org/abs/2108.10807
https://arxiv.org/abs/2110.11660
https://doi.org/10.1016/j.cpc.2006.07.002
https://doi.org/10.1016/j.cpc.2006.07.002
https://arxiv.org/abs/hep-ph/0511200
https://doi.org/10.1016/j.cpc.2007.07.001
https://doi.org/10.1016/j.cpc.2007.07.001
https://arxiv.org/abs/0704.2423
https://doi.org/10.22323/1.303.0046
https://arxiv.org/abs/1810.04580

Loop integral evaluation and asymptotic expansion with pySEcDEc

[11] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of
one-dimensional series expansions, Comput. Phys. Commun. 269 (2021) 108125
[2006.05510].

[12] X. Liu and Y.-Q. Ma, AMFlow: a Mathematica package for Feynman integrals computation
via Auxiliary Mass Flow, 2201.11669.

[13] M. Hidding and J. Usovitsch, Feynman parameter integration through differential equations,
2206.14790.

[14] J. Carter and G. Heinrich, SecDec: A general program for sector decomposition, Comput.
Phys. Commun. 182 (2011) 1566 [1011.5493].

[15] S. Borowka, J. Carter and G. Heinrich, Numerical Evaluation of Multi-Loop Integrals for
Arbitrary Kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396.

[16] S. Borowka, G. Heinrich, S.P. Jones, M. Kerner et al., SecDec-3.0: numerical evaluation of
multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470.

[17] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, 1707 .06453.

[18] I. Dubovyk, J. Usovitsch and K. Grzanka, Toward Three-Loop Feynman Massive Diagram
Calculations, Symmetry 13 (2021) 975.

[19] J. Dick, FY. Kuo and I.H. Sloan, High-dimensional integration: The quasi-monte carlo way,
Acta Numerica 22 (2013) 133-288.

[20] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop
Feynman integrals, JHEP 02 (2015) 120 [1411.7392].

[21] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,
Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391].

[22] B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076
[1111.2589].

[23] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals,
Eur. Phys. J. C 71 (2011) 1626 [1011.4863].

[24] B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and
Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [1206.0546].

[25] L. Chen, G. Heinrich, S.P. Jones, M. Kerner et al., ZH production in gluon fusion: two-loop
amplitudes with full top quark mass dependence, JHEP 03 (2021) 125 [2011.12325].

[26] L. Chen, G. Heinrich, S. Jahn, S.P. Jones et al., Photon pair production in gluon fusion: Top
quark effects at NLO with threshold matching, JHEP 04 (2020) 115 [1911.09314].

[27] S.P.Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD Corrections to Higgs
Boson Plus Jet Production with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 120
(2018) 162001 [1802.00349].

https://doi.org/10.1016/j.cpc.2021.108125
https://arxiv.org/abs/2006.05510
https://arxiv.org/abs/2201.11669
https://arxiv.org/abs/2206.14790
https://doi.org/10.1016/j.cpc.2011.03.026
https://doi.org/10.1016/j.cpc.2011.03.026
https://arxiv.org/abs/1011.5493
https://doi.org/10.1016/j.cpc.2012.09.020
https://doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1707.06453
https://doi.org/10.3390/sym13060975
https://doi.org/10.1017/S0962492913000044
https://doi.org/10.1007/JHEP02(2015)120
https://arxiv.org/abs/1411.7392
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
https://doi.org/10.1140/epjc/s10052-012-2139-2
https://arxiv.org/abs/1206.0546
https://doi.org/10.1007/JHEP03(2021)125
https://arxiv.org/abs/2011.12325
https://doi.org/10.1007/JHEP04(2020)115
https://arxiv.org/abs/1911.09314
https://doi.org/10.1103/PhysRevLett.120.162001
https://doi.org/10.1103/PhysRevLett.120.162001
https://arxiv.org/abs/1802.00349

	Introduction
	The expected performance
	Asymptotic expansion
	Adaptive sampling of amplitudes
	Conclusions

