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1. Introduction

Theoretical predictions of QCD observables at the LHC need to be able to match the increasing
levels of experimental precision. This mandates calculating corrections to the hard-partonic cross
sections using perturbation theory in 𝛼𝑠. QCD has been well-studied at next-to-leading order (NLO)
in 𝛼𝑠 and there are many results at next-to-next-to-leading order (NNLO) using NNLO subtraction
schemes [1]. Theoretical predictions at next-to-next-to-next-to-leading order (N3LO) are available
for a few processes. The cancellation of infrared divergences across multi-loop corrections and
multi-leg corrections is guaranteed by the KLN theorem at each order in 𝛼𝑠. However, achieving the
necessary analytic control of the corrections to balance against numerical calculations is extremely
complex. The work discussed in [2] exposes the single and double unresolved singularities hidden
within triple collinear splitting functions [3–5], which are fundamental objects relevant to the two-
leg corrections at NNLO. These proceedings discuss two of these splitting functions. Revealing
hidden structures at NNLO (and eventually at N3LO) is the key to simplifying NNLO subtraction
schemes (and creating a viable N3LO subtraction scheme).

2. Triple Collinear Splitting Functions

Time-like tree-level triple collinear splitting functions are extracted from colour-ordered sub-
amplitudes, where the notation of Ref. [3] is used. For a colour-ordered sub-amplitude,

A(..., 𝑖, 𝑗 , 𝑘, ...), (1)

particle 𝑖 is colour-connected to 𝑗 , which is colour-connected to 𝑘 . In the limit where {𝑖, 𝑗 , 𝑘}
become collinear, the triple collinear splitting function is extracted from the amplitude,

|A(..., 𝑖, 𝑗 , 𝑘, ...) |2 → 𝑃𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) |A(..., 𝑃, ...) |2. (2)

Partons 𝑖, 𝑗 , 𝑘 of particle type 𝑎, 𝑏, 𝑐 cluster to form particle 𝑃 with the sum of the momenta of
{𝑖, 𝑗 , 𝑘}.

The Lorentz invariant quantities,

𝑠𝑖,...,𝑛 ≡ (𝑝𝑖 + ... + 𝑝𝑛)2, (3)

are used, in terms of parton momenta. Using the massless quark limit suitable for high energy
collisions and gluons being massless, 𝑠𝑖 𝑗 = 2𝑝𝑖 · 𝑝 𝑗 = 2𝐸𝑖𝐸 𝑗 (1 − cos 𝜃𝑖 𝑗), where 𝐸𝑖 , 𝐸 𝑗 are the
energies of particles 𝑖, 𝑗 and 𝜃𝑖 𝑗 is the angle between them. Collinear and soft singularites can be
expressed in terms of these Lorentz invariant quantities. 𝑠𝑖 𝑗 approaches zero if 𝑖, 𝑗 are collinear
or at least one is soft. We work in 𝑑 = 4 − 2𝜖 dimensions. The triple collinear limit is the region
where 𝑠𝑖 𝑗 , 𝑠 𝑗𝑘 , 𝑠𝑖𝑘 , 𝑠𝑖 𝑗𝑘 become small. We can write 𝑝𝑖 = 𝑥𝑖𝑝𝑃, 𝑝 𝑗 = 𝑥 𝑗 𝑝𝑃 and 𝑝𝑘 = 𝑥𝑘 𝑝𝑃 with
𝑥𝑖 + 𝑥 𝑗 + 𝑥𝑘 = 1. In practice, a spectator momentum ℓ is used to define the momentum fractions,
𝑠𝑖ℓ = 𝑥𝑖𝑠𝑃ℓ . In these proceedings we will focus only on two splittings which illustrate all the
features exposed in [2]: 𝑞𝛾𝛾 → 𝑞, 𝑞𝑔𝑔 → 𝑞. We are using a shorthand notation for the splitting
functions,

𝑃𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) ≡ 𝑃𝑎𝑏𝑐→𝑃 (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 ; 𝑠𝑖 𝑗 , 𝑠𝑖𝑘 , 𝑠 𝑗𝑘 , 𝑠𝑖 𝑗𝑘). (4)
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3. Singularity structure of the triple collinear splitting function

Can you decompose triple collinear splitting functions into a strongly-ordered iterated collinear
splitting and a remainder which is finite when any two of {𝑖, 𝑗 , 𝑘} are collinear?

This can be illustrated in the left of Fig. 1, where 𝑃 undergoes a strongly-ordered iterated
splitting into 𝑖, 𝑗 , 𝑘 and the right of Fig. 1, where 𝑃 undergoes a direct 1 → 3 splitting. The
momentum fraction of the second iterated splitting 𝑦 𝑗 can be related to {𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘} by momentum
conservation: 𝑥 𝑗 = (1 − 𝑥𝑘)𝑦 𝑗 . The invariants in the denominator of the 1 → 2 splitting functions
are 𝑠𝑖 𝑗𝑘 and 𝑠𝑖 𝑗 because these are the propagator contributions to the amplitudes.

𝑥𝑖

𝑥 𝑗

𝑥𝑘

𝑥𝑖

𝑥 𝑗

𝑥𝑘

𝑃𝑞𝑔 (𝑥𝑘)
𝑠𝑖 𝑗𝑘

𝑃𝑞𝑔 (𝑦 𝑗 )
𝑠𝑖 𝑗

(1 − 𝑥𝑘)

(1 − 𝑦 𝑗)

𝑦 𝑗

𝑅𝑞𝑔𝑔 (𝑖, 𝑗 ,𝑘)
𝑠2
𝑖 𝑗𝑘

Figure 1: On the left: An iterated single-collinear contribution to the triple collinear splitting function. On
the right: A remainder function 𝑅𝑎𝑏𝑐→𝑃 which contains the parts of the triple collinear splitting function
that are not contained in the strongly-ordered, iterated contributions.

In other words, we rewrite the triple collinear splitting functions as

𝑃𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) =
∑︁

p𝑒𝑟𝑚𝑠

1
𝑠𝑖 𝑗𝑘

𝑃(𝑎𝑏)𝑐→𝑃 (𝑥𝑘)
1
𝑠𝑖 𝑗

𝑃𝑎𝑏→(𝑎𝑏)

(
𝑥 𝑗

1 − 𝑥𝑘

)
+ 1
𝑠2
𝑖 𝑗𝑘

𝑅𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) (5)

where 𝑃𝑎𝑏→(𝑎𝑏) are the usual spin-averaged two-particle splitting functions and the remainder
𝑅𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) depends on the momentum fractions and small invariants.

4. New Basis

In order to decide which terms in 𝑃𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) should be in the remainder 𝑅𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘),
we express the splitting functions in terms of a different basis which organises how terms contribute
in single collinear limits. The new basis is constructed out of traces of four gamma matrices
contracted with momenta:

Tr(/𝑖 /𝑗 /𝑘/ℓ) = 𝑠𝑖 𝑗 𝑠𝑘𝑙 + 𝑠𝑖𝑙𝑠 𝑗𝑘 − 𝑠𝑖𝑘𝑠 𝑗𝑙 . (6)

The useful property of these traces is that Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠𝑖 𝑗 is not singular in the 𝑖, 𝑗 collinear limit. This
be seen by expanding the trace in the 𝑖, 𝑗 collinear limit, where 𝑌𝑖 𝑗 ≡ 𝑠𝑖𝑙𝑠 𝑗𝑘 − 𝑠𝑖𝑘𝑠 𝑗𝑙 → O(√𝑠𝑖 𝑗).
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Similarly Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠 𝑗𝑘 , Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠𝑘𝑙 and Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠𝑖𝑙 are not singular in the ( 𝑗 , 𝑘), (𝑘, 𝑙), (𝑖, 𝑙)
collinear limits respectively. While the same is not true for Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠𝑖𝑘 or Tr(/𝑖 /𝑗 /𝑘/ℓ)/𝑠 𝑗𝑙. When
we work in the 𝑖, 𝑗 , 𝑘 collinear limit, we allow the momentum of a spectator ℓ to be normalised such
that, Tr(/𝑖 /𝑗 /𝑘/ℓ) = 𝑥𝑘𝑠𝑖 𝑗 + 𝑥𝑖𝑠 𝑗𝑘 − 𝑥 𝑗 𝑠𝑖𝑘 . The new basis is described in full in [2].

We introduce
𝑊𝑖 𝑗 = (𝑥𝑖𝑠 𝑗𝑘 − 𝑥 𝑗 𝑠𝑖𝑘)2 − 2

(1 − 𝜖)
𝑥𝑖𝑥 𝑗𝑥𝑘

(1 − 𝑥𝑘)
𝑠𝑖 𝑗 𝑠𝑖 𝑗𝑘 , (7)

such that terms like 𝑊𝑖 𝑗/𝑠2
𝑖 𝑗

in the new basis do not contribute in the 𝑖, 𝑗 collinear limit and are
O(1/√𝑠𝑖 𝑗). The second term removes the 𝑖, 𝑗 collinear contribution from the first term. This is an
integrable singularity which vanishes upon azimuthal integration in 𝑑 dimensions, where we take
the azimuthal angle with respect to the (𝑖 𝑗) direction. Using Ref. [6], we can write

(𝑥𝑖𝑠 𝑗𝑘 − 𝑥 𝑗 𝑠𝑖𝑘)2 =
4𝑥𝑖𝑥 𝑗𝑥𝑘

(1 − 𝑥𝑘)
𝑠𝑖 𝑗 𝑠𝑖 𝑗𝑘 cos2 𝜙𝑖 𝑗 ,𝑘𝑙, (8)

such that 𝑊𝑖 𝑗 has the form,

𝑊𝑖 𝑗 =
4𝑥𝑖𝑥 𝑗𝑥𝑘

(1 − 𝑥𝑘)
𝑠𝑖 𝑗 𝑠𝑖 𝑗𝑘

(
cos2 𝜙𝑖 𝑗 ,𝑘𝑙 −

1
2(1 − 𝜖)

)
. (9)

We also introduce the auxiliary functions,

𝐴0(𝑥, 𝑦) = 1 − (1 − 𝑥)
(1 − 𝑦) , 𝐵0(𝑥, 𝑦) = 1 + 2𝑥(𝑥 − 2)

(1 − 𝑦)2 + 4𝑥
(1 − 𝑦) . (10)

5. Results

General features of the results (for all QCD triple collinear splitting functions) are as follows: All
terms with two of {𝑖, 𝑗 , 𝑘} collinear, appear as a permutation of 1

𝑠𝑖 𝑗𝑘
𝑃(𝑎𝑏)𝑐→𝑃 (𝑥𝑘) 1

𝑠𝑖 𝑗
𝑃𝑎𝑏→(𝑎𝑏)

(
𝑥 𝑗

1−𝑥𝑘

)
,

or 𝑃 × 𝑃 for short. In practice, due to colour-ordering, many coefficients in the new basis are zero.
All splitting functions are describable with one trace ordering (appropriate to the colour-ordering)
if {𝛾𝜇, 𝛾𝜈} is used. The full set of results are examined in [2].

We expose all single and double unresolved singularities contained within the triple collinear
splitting functions and introduce the concept of internal and external singularities when in a triple
collinear limit. Internal singularities in a 𝑖, 𝑗 , 𝑘 collinear limit involve only small invariants in
{𝑠𝑖 𝑗 , 𝑠 𝑗𝑘 , 𝑠𝑖𝑘 , 𝑠𝑖 𝑗𝑘}.

• Internal single collinear singularities like 1/𝑠𝑖 𝑗 appear only in 𝑃 × 𝑃 terms (the iterated
two-particle splitting contributions).

• Internal single soft singularities like 𝑠𝑖𝑘/𝑠𝑖 𝑗/𝑠 𝑗𝑘 appear only in 𝑅𝑎𝑏𝑐→𝑃.

External singularities involve singularities in momentum fractions 𝑥𝐼 , with reference to a spectator
particle and are inherited from the parent multi-leg amplitudes before taking the 𝑖, 𝑗 , 𝑘 collinear
limit.

• When external single collinear singularities like 1/𝑥𝑖 appear in 𝑃𝑎𝑏𝑐→𝑃, they are all contained
in 𝑃 × 𝑃 terms.
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• When external single collinear singularities like 1/𝑥𝑖 do not appear in 𝑃𝑎𝑏𝑐→𝑃, there could
be terms proportional to 1/𝑥𝑖 in 𝑃 × 𝑃 and 𝑅𝑎𝑏𝑐→𝑃 which cancel.

• External single soft singularities like 𝑥𝑖/𝑥 𝑗/𝑠𝑖 𝑗 appear only in the iterated 𝑃 × 𝑃 terms.

Double soft singularities are defined as external because they require reference to some spectator.

5.1 Two gluons with a collinear quark or antiquark

(a) In the case where the gluons are abelianised (𝑔̃) or two photons are collinear to the quark, the
splitting function is symmetric under the exchange of the two bosons ( 𝑗 , 𝑘). We find,

𝑃𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘) =
𝑃𝑞𝑔 (𝑥𝑘)
𝑠𝑖 𝑗𝑘

𝑃𝑞𝑔

(
𝑥 𝑗

1−𝑥𝑘

)
𝑠𝑖 𝑗

+
𝑃𝑞𝑔 (𝑥 𝑗)
𝑠𝑖 𝑗𝑘

𝑃𝑞𝑔

(
𝑥𝑘

1−𝑥 𝑗

)
𝑠𝑖𝑘

+ 1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘), (11)

where

𝑅𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘) = 𝑏̃sub
0 (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) −

(1 − 𝜖)2

(1 − 𝑥𝑘)
Tr(/𝑗/𝑖 /𝑘/ℓ)

𝑠𝑖 𝑗
+ 𝑏̃sub(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘)

𝑠𝑖 𝑗𝑘Tr(/𝑗/𝑖 /𝑘/ℓ)
𝑠𝑖 𝑗 𝑠𝑖𝑘

+ ( 𝑗 ↔ 𝑘),
(12)

and

𝑏̃sub
0 (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) = (1 − 𝜖)

(
1 − (1 − 𝜖)𝐴0(𝑥 𝑗 , 𝑥𝑘)

)
, (13)

𝑏̃sub(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) = −
𝑥𝑘𝑃𝑞𝑔 (𝑥𝑘)
𝑥 𝑗 (1 − 𝑥𝑖)

+ 2
(1 − 𝑥𝑖)

− 2(1 − 𝜖) + 1
2
(1 − 𝜖)2. (14)

Eqs. (11)–(14) are equivalent to Eq. (5.6) in Ref. [3] up to a normalisation of a factor of 4.
The behaviour of the 𝑃𝑞𝛾𝛾→𝑞 triple collinear splitting function in the limit where individual

momentum fractions are small is in Table 1. There is no singular behaviour as 𝑥𝑖 → 0 reflecting the
fact that there is no singularity when the quark and spectator momentum are collinear and that there
is no soft quark singularity. We also see that there are contributions from both the strongly-ordered
contribution and from 𝑅𝑞𝛾𝛾→𝑞 when 𝑥 𝑗 → 0 and 𝑥𝑘 → 0 that do not cancel in the full 𝑃𝑞𝛾𝛾→𝑞

splitting function. However, only the strongly-ordered term contributes in the soft 𝑗 or soft 𝑘 limits,

𝑃𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘)
𝑗 soft
−→ 2𝑥𝑖

𝑠𝑖 𝑗𝑥 𝑗

1
𝑠𝑖𝑘

𝑃𝑞𝑔 (𝑥𝑘), (15)

𝑃𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘)
𝑘 soft−→ 2𝑥𝑖

𝑠𝑖𝑘𝑥𝑘

1
𝑠𝑖 𝑗

𝑃𝑞𝑔 (𝑥 𝑗). (16)

It can be seen that the strongly-ordered terms contribute the full double soft 𝑗 , 𝑘 limit (a product of
two eikonal factors) and there are no contributions from 𝑏̃(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘). There are no other double
soft singularities.
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𝑞𝛾𝛾 → 𝑞 𝑃 × 𝑃 terms 1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘) 1
𝑠2
𝑖 𝑗𝑘

𝑃𝑞𝛾𝛾→𝑞 (𝑖, 𝑗 , 𝑘)

𝑥𝑖 → 0 0 0 0

𝑥 𝑗 → 0 + 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥 𝑗

[
2𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

1
𝑥 𝑗

[
2𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖𝑘

𝑥𝑖
𝑥 𝑗

[
𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥 𝑗

[
− 𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

1
𝑥 𝑗

[
− 𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖𝑘

𝑥𝑖
𝑥 𝑗

[
𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥 𝑗

[
𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

1
𝑥 𝑗

[
𝑃𝑞𝑔 (𝑥𝑘)

]

𝑥𝑘 → 0 + 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
2𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥𝑘

[
2𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖𝑘

𝑥𝑖
𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
− 𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥𝑘

[
− 𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖𝑘

𝑥𝑖
𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖𝑘𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
Table 1: Singular behaviour of the 𝑃𝑞𝛾𝛾→𝑞 triple collinear splitting function in the limit where individual
momentum fractions are small. The contributions from the iterated two-particle splittings are shown in
column 2, while the contributions from 𝑅𝑞𝛾𝛾→𝑞 are shown in column 3 and the contributions for the entire
splitting function 𝑃𝑞𝛾𝛾→𝑞 are shown in column 4. Each row shows the singular limit for a different momentum
fraction tending to zero. The vertical displacement within each cell is organised by {𝑠𝑖 𝑗 , 𝑠 𝑗𝑘 , 𝑠𝑖𝑘 , 𝑠𝑖 𝑗𝑘}.

(b) In the case where gluon 𝑗 is colour-connected to quark 𝑖 and gluon 𝑘 , we find that,

𝑃𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘) =
𝑃𝑞𝑔 (𝑥𝑘)
𝑠𝑖 𝑗𝑘

𝑃𝑞𝑔

(
𝑥 𝑗

1−𝑥𝑘

)
𝑠𝑖 𝑗

+
𝑃𝑞𝑔 (1 − 𝑥𝑖)

𝑠𝑖 𝑗𝑘

𝑃𝑔𝑔

(
𝑥 𝑗

1−𝑥𝑖

)
𝑠 𝑗𝑘

+ 1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘), (17)

where

𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘) =
2(1 − 𝜖)
(1 − 𝑥𝑖)2

𝑊 𝑗𝑘

𝑠2
𝑗𝑘

+ 4(1 − 𝜖)𝑥𝑘
(1 − 𝑥𝑖)2

Tr(/𝑖 /𝑗 /𝑘/ℓ)
𝑠 𝑗𝑘

+ (1 − 𝜖)2

(1 − 𝑥𝑘)
Tr(/𝑖 /𝑗 /𝑘/ℓ)

𝑠𝑖 𝑗

+𝑏0(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) + 𝑏(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘)
𝑠𝑖 𝑗𝑘Tr(/𝑖 /𝑗 /𝑘/ℓ)

𝑠𝑖 𝑗 𝑠 𝑗𝑘
, (18)

and

𝑏0(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) = (1 − 𝜖) (𝐵0(𝑥𝑘 , 𝑥𝑖) − 1 + (1 − 𝜖)𝐴0(𝑥𝑖 , 𝑥𝑘)) , (19)

𝑏(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘) = −
𝑥 𝑗𝑃𝑞𝑔 (𝑥 𝑗)
𝑥𝑘 (1 − 𝑥𝑖)

−
2𝑥𝑘𝑃𝑞𝑔 (𝑥𝑘)
𝑥 𝑗 (1 − 𝑥𝑖)

+ 4
(1 − 𝑥𝑖)

− 3(1 − 𝜖). (20)

Eqs. (17)–(20) are equivalent to Eq. (5.5) in Ref. [3] up to a normalisation of a factor of 4.
We observe that 𝑏 contains inverse powers of 𝑥 𝑗 and 𝑥𝑘 . The behaviour of the 𝑃𝑞𝑔𝑔→𝑞 triple

collinear splitting function in the limit where individual momentum fractions are small is in Table 2.
We see that there is no singular behaviour as 𝑥𝑖 → 0. This is because there is no singularity when
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𝑞𝑔𝑔 → 𝑞 𝑃 × 𝑃 terms 1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘) 1
𝑠2
𝑖 𝑗𝑘

𝑃𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘)

𝑥𝑖 → 0 0 0 0

𝑥 𝑗 → 0 + 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥 𝑗

[
2𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

𝑥𝑘
𝑥 𝑗

[
2𝑃𝑞𝑔 (𝑥𝑘)

] + 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

𝑥𝑖
𝑥 𝑗

[
− 2𝑃𝑞𝑔 (𝑥𝑘)

]
+ 1
𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

𝑥𝑘
𝑥 𝑗

[
− 2𝑃𝑞𝑔 (𝑥𝑘)

] 0

𝑥𝑘 → 0 + 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
2𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

𝑥 𝑗

𝑥𝑘

[
2𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠 𝑗𝑘

𝑥 𝑗

𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
− 𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

𝑥 𝑗

𝑥𝑘

[
− 𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠 𝑗𝑘

𝑥 𝑗

𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠𝑖 𝑗𝑠𝑖 𝑗𝑘

1
𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
+ 1
𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

𝑥 𝑗

𝑥𝑘

[
𝑃𝑞𝑔 (𝑥 𝑗)

]
Table 2: Singular behaviour of 𝑃𝑞𝑔𝑔→𝑞 in the limit where individual momentum fractions are small.

the quark and spectator are collinear and there is no soft quark singularity. When 𝑥 𝑗 → 0, we see
contributions from both the strongly-ordered contribution and from 𝑅𝑞𝑔𝑔→𝑞 which cancel in the full
𝑃𝑞𝑔𝑔→𝑞 splitting function. When 𝑥𝑘 → 0, we see that the contributions from the strongly-ordered
contribution and from 𝑅𝑞𝑔𝑔→𝑞 do not cancel in the full 𝑃𝑞𝑔𝑔→𝑞 splitting function.

In the soft 𝑘 limit, only the strongly-ordered term contributes and we recover the expected limit
describing collinear partons 𝑖 and 𝑗 with the soft gluon 𝑘 radiated between the colour-connected
partners 𝑗 and ℓ,

𝑃𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘)
𝑘 soft−→

2𝑥 𝑗

𝑠 𝑗𝑘𝑥𝑘

1
𝑠𝑖 𝑗

𝑃𝑞𝑔 (𝑥 𝑗). (21)

However, in the soft 𝑗 limit the 1/𝑥 𝑗/𝑠𝑖 𝑗 and 1/𝑥 𝑗/𝑠 𝑗𝑘 terms cancel between the 𝑃 × 𝑃 and
𝑅𝑞𝑔𝑔→𝑞 contributions, such that

1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘)
𝑗 soft
−→

(
− 2𝑥𝑖
𝑥 𝑗 𝑠𝑖 𝑗

− 2𝑥𝑘
𝑥 𝑗 𝑠 𝑗𝑘

+ 2𝑠𝑖𝑘
𝑠𝑖 𝑗 𝑠 𝑗𝑘

)
1
𝑠𝑖𝑘

𝑃𝑞𝑔 (𝑥𝑘), (22)

𝑃𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘)
𝑗 soft
−→ 2𝑠𝑖𝑘

𝑠𝑖 𝑗 𝑠 𝑗𝑘

1
𝑠𝑖𝑘

𝑃𝑞𝑔 (𝑥𝑘). (23)

This is precisely as expected for the emission of a soft gluon between the hard (and collinear)
radiators 𝑖 and 𝑘 . There are also double soft singularities when gluons 𝑗 , 𝑘 are soft. These are
contained iteratively in the 𝑃 × 𝑃 contributions and in 𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘),

𝑃𝑞𝑔 (1 − 𝑥𝑖)
𝑠𝑖 𝑗𝑘

𝑃𝑔𝑔

(
𝑥 𝑗

1−𝑥𝑖

)
𝑠 𝑗𝑘

+
𝑃𝑞𝑔 (𝑥𝑘)
𝑠𝑖 𝑗𝑘

𝑃𝑞𝑔

(
𝑥 𝑗

1−𝑥𝑘

)
𝑠𝑖 𝑗

𝑗 ,𝑘 soft
−→ 2

(1 − 𝑥𝑖)𝑠𝑖 𝑗𝑘𝑠 𝑗𝑘
𝑃𝑔𝑔

(
𝑥 𝑗

1 − 𝑥𝑖

)
+ 4
𝑥 𝑗𝑥𝑘𝑠𝑖 𝑗𝑘𝑠𝑖 𝑗

, (24)

1
𝑠2
𝑖 𝑗𝑘

𝑅𝑞𝑔𝑔→𝑞 (𝑖, 𝑗 , 𝑘)
𝑗 ,𝑘 soft
−→

2(1 − 𝜖)𝑊 𝑗𝑘

(1 − 𝑥𝑖)2𝑠2
𝑗𝑘
𝑠2
𝑖 𝑗𝑘

−
(

2
𝑥𝑘 (1 − 𝑥𝑖)

+ 4
𝑥 𝑗 (1 − 𝑥𝑖)

)
Tr(/𝑖 /𝑗 /𝑘/ℓ)
𝑠𝑖 𝑗 𝑠 𝑗𝑘𝑠𝑖 𝑗𝑘

.

(25)
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6. Conclusions

In these proceedings, we have rewritten 𝑃𝑞𝛾𝛾→𝑞 and 𝑃𝑞𝑔𝑔→𝑞 to expose the single and double
unresolved limits. These two splitting functions, when decomposed, display all the features which
are present in the other QCD triple collinear splitting functions [2]. We have isolated the strongly-
ordered iterated contributions as products of the usual spin-averaged two-particle splitting functions
(generically 𝑃×𝑃) and a remainder function 𝑅𝑎𝑏𝑐→𝑃 (𝑖, 𝑗 , 𝑘) that is finite when any pair of {𝑖, 𝑗 , 𝑘}
are collinear. This work allows us to appreciate the interplay between NLO and NNLO, which
is important for the development of efficient infrared subtraction schemes. Similar work on the
quadruple collinear limit could be useful for progressing to N3LO.
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