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1. Introduction

Vector boson pair production pp → VV is an important process at the LHC. It is part of the
irreducible background to the Higgs boson decay H → 4l/2l2ν. Precise determination of the
Higgs decay cross section in the off-shell region provides a constraint on the Higgs width [1–5].
Vector boson pair production contributes a sizeable correction through interference effects with the
off-shell Higgs decay. Furthermore, this process can be used to test the Standard Model by probing
anomalous gauge couplings. Therefore a reliable description of this production mode is essential.

The gluon fusion channel gg → VV is loop-induced and formally enters pp → VV at next-
to-next-to-leading order (NNLO) QCD. Despite being suppressed by the strong coupling constant,
the large gluon flux at the LHC as well as event selection enhance the contribution of the gluon
fusion channel to the hadronic cross section [6]. The leading order (LO) contribution has been
known for a long time [6–9], the next-to-leading order (NLO) real correction is also available in the
literature [10–12]. Several years ago, the NLO virtual correction with massless internal quarks was
calculated and found to be quite large [13, 14]. The two-loop correction can reach 50% at partonic
level, which in turn yields a contribution to the hadronic cross section of 6 - 8% for σpp→ZZ and
2% for σpp→WW . A previous study shows that the massive third generation increases σgg→WW

by 10% at LO, and dominates in the high pt region [15]. This motivates inclusion of the top
quark contribution to the NLO virtual correction. Multiple works have been devoted to calculating
massive quark contributions [16–18], where approximations were applied to simplify the problem.
Recently, full top quark mass effects were computed numerically for bothWW [19] and Z Z [20, 21]
production by two independent groups. In these proceedings, we present our calculation method:
we perform integration-by-part reductions for each phase space point and evaluate master integrals
using the auxiliary mass flow method [22–24]. This paper is organised as follows. In Section 2
we describe the amplitude calculation and discuss the numerical methods applied in the integral
reduction and master integral evaluation. We present our results in Section 3.

2. Calculational setup

We consider the process

g(p1) + g(p2) → V(p3) + V(p4) , (1)

where V = W or Z . This process is loop-induced and proceeds through a fermion loop. Our goal
is to calculate the scattering amplitude for these processes at two-loop order in QCD with fermion
loops involving massive top quarks.1 Representative Feynman diagrams for the two different final
states are given in Table 1. We do not consider diagrams with intermediate Z- or Higgs bosons as
these are already available in the literature [6, 25–28].

The scattering amplitudes can be decomposed in colour factors

A = δAB
(
CAA[CA] + CF A[CF ] + A[4

2]
)
, (2)

1We refer the reader to Refs. [19, 20] for detailed descriptions of our calculations.
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gg → WW gg → Z Z
g W

g W

g W

g W

g Z

g Z

g Z

g Z

g W

g W

W g

g W

Z g

g Z

Table 1: Representative diagrams for the two final states considered. Blue fermion lines represent the top
quarks. For WW there is a total of 136 diagrams while there are 138 for Z Z .

where CA = NC and CF =
N2
C
−1

2NC
are the Casimir elements of SU(NC) where NC = 3 is the number

of colours. A and B are the adjoint colour indices of the gluons. All factorisable diagrams are
contained in A[4

2] which vanishes for the final stateV = W . In these proceedings we do not consider
the factorisable contribution, indeed we keep only contributions proportional to CA or CF .

We work in dimensional regularisation and set d = 4 − 2ε . The electroweak vertices have an
axial contribution and therefore introduce the γ5 matrix. As γ5 is defined in four dimensions, a
prescription for dealing with this matrix in dimensional regularisation is required. For V = Z we
can use a naive scheme, in which we retain the anti-commutative property of γ5 in d dimensions,
for all diagrams except those contributing to A[4

2]. For these diagrams as well as all diagrams for
V = W we employ the Larin scheme [29, 30].

We project the amplitudes onto 36 tensor structures, TI and SI ,

A =
18∑
I=1

AI TI︸︷︷︸
parity even

+

36∑
I=19

AI SI︸︷︷︸
parity odd

. (3)

As the scattering amplitude for V = Z is parity even, the second sum is only relevant for V = W .
Expressions for the tensor structures is given in Ref. [6]. The form factors, AI , contain scalar
Feynman integrals that can be reduced to a set of master integrals (MIs) through integration-by-
parts (IBP) reduction.

We perform the reductions with KIRA 2.2 [31, 32] for individual phase space points keeping
only the dimension, d, as a parameter. The masses are set to integer values

mt = 173 GeV , mW = 80 GeV , mZ = 91 GeV , (4)

and for the kinematic invariants s = (p1 + p2)
2 and t = (p1 − p3)

2 we use rational values.2 A
summary of the complexity and computational expense is given in Table 2. The reductions are
performed on single cores and the relatively low memory consumption allows for straightforward
parallelisation.

Having expressed the form factors, AI , in terms of master integrals, the final step of the
calculation is to evaluate these integrals. We evaluate the master integrals numerically using
a method based on auxiliary mass flow [22–24]. Details on our implementation are given in
Refs. [19, 20]. Here, we briefly summarise the procedure. At variance with the original formulation

2This is different to the calculation in Ref. [19] where the reduction was parametric in s and t.
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gg → WW gg → Z Z
IBP families 33 21
highest rank 5 4
MI families 22 15
MIs 334 205
CPU h / point 8 3
Memory GB 5 2

Table 2: Summary of IBP reduction including computational expense for the two final states considered.
The number of families and master integrals (MIs) is higher for the WW final state due to more possibilities
for the internal flavour flow.

gg → WW gg → Z Z

Table 3: Integrals required to compute the boundary conditions for all master integrals. Solid blue lines
are massive, black lines are massless. Analytic expressions for all boundary integrals can be found in the
literature.

of this method, we add the auxiliary mass, η, to the massive propagators only, i.e. mt → mt − iη.
We then construct analytic differential equations with respect to η and obtain boundary conditions
in the limit η → ∞. In this limit, all the master integrals can be expressed in terms of a handful of
simpler integrals. The necessary integral topologies are depicted in Table 3 and analytic expressions
for the integrals can be found in the literature [33–37].

We proceed by inserting generalised power series expansions for the master integrals, I , in the
differential equation,

I =
∑
j

ε j
∑
k

∑
l

c jkl

(
1
η

)k
lnl(η) + . . . , (5)

and solve the resulting system numerically for the coefficients c jkl and impose the boundary
condition. The radius of convergence of such expansions are limited by the distance to the nearest
singularity of the differential equation. By evaluating at a point within this radius and performing
a new expansion around this point, we can step by step transport the master integrals back to the
physical mass at η = 0. Note that at all intermediate, as well as at he final point η = 0, the differential
equation admits simple Taylor expansions in η for the integrals.

A very important observation is that this procedure provides full control of the numerical
precision. The precision can always be improved by increasing the order of expansion in the power
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series and by taking smaller steps within the radius of convergence of the expansions. In our case,
we obtain results with around 15 digits of precision for V = W and 20 digits for V = Z in one hour
on a single core. The memory consumption is negligible and the evaluation of master integrals is
therefore easy to parallelise. With efficient and precise evaluation of the master integrals, we can
present results for scans of phase space at modest computational expense.

3. Results

To present our results, we parametrise the phase space in terms of the relative velocity β and
scattering angle θ,

s = (p1 + p2)
2 =

4m2
V

1 − β2 , t = (p1 − p3)
2 = m2

V −
s
2
(1 − β cos θ) . (6)

The procedure to evaluate the form factors, AI , is described above. The tensor structures,TI and
SI are evaluated by constructing polarisation vectors for the external particles using spinor-helicity
formalism. For the gluons the polarisation vectors are given by

ε
µ
1,L = −

1
√

2
[2|γµ |1〉
[21]

, ε
µ
1,R =

1
√

2
〈2|γµ |1]
〈21〉

, (7)

ε
µ
2,L = −

1
√

2
[1|γµ |2〉
[12]

, ε
µ
2,R =

1
√

2
〈1|γµ |2]
〈12〉

. (8)

We write the massive boson polarisation vectors in terms of decay currents

ε
∗µ
3,L = 〈5|γ

µ |6] , ε
∗µ
4,L = 〈7|γ

µ |8] , (9)

where we decompose the massive momenta into four massless momenta vectors for p3 = p5 + p6

and p4 = p7 + p8. For both final states there are two independent helicity configurations.
The renormalised, two-loop scattering amplitudes3 have a universal infrared pole structure [38]

given by

A(2)(ε, µ) = I(1)(ε, µ)A(1)(ε, µ) + F(2)(ε, µ) , (10)

where

I(1)(ε, µ) = −
eεγE

Γ(1 − ε)

(
CA

ε2 +
11
6 CA

ε

) (
µ2eiπ

s

)ε
, (11)

and F(2)(ε, µ) is a finite remainder. The superscripts on A and F denote loop order and we expand
A(1)(ε, µ) to O(ε2). In Tables 4 and 5 we compare the infrared pole structure prediction to our
evaluation of the amplitudes for WW and Z Z respectively. We find agreement to at least 10 digits
on the ε−2 pole.

We proceed by scanning the phase space and calculate the quantity

2Re
[
F(2)(ε, µ)A(1)?(ε, µ)

]
|A(1)(ε, µ)|2

, (12)

3See Refs. [19, 20] for details on our renormalisation procedure.
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CA ε−2 ε−1

LLLL
A(2)/A(1) 1.00000000023 − 3.0 · 10−11i −4.94945452453 + 3.89380807761i

IR pole 1.00000000000 −4.94945452593 + 3.89380807754i

LRLL
A(2)/A(1) 0.99999999815 − 1.6 · 10−9i −4.29712348534 + 9.47440879823i

IR pole 1.00000000000 −4.29712347965 + 9.47440880940i

Table 4: Comparison of the renormalised two-loop amplitude for gg → WW , normalised to the finite
one-loop amplitude, and the infrared (IR) pole prediction at a phase space point given by Eq. (6) with
√

s ≈ 367 GeV and θ ≈ 36.9◦, with µ = mW .

CA ε−2 ε−1

LLLL
A(2)/A(1) 1.0000000000008 − 7.6 · 10−13i 0.8304916142577 + 3.229874368770i

IR pole 1.0000000000000 0.8304916142539 + 3.229874368771i

LRLL
A(2)/A(1) 1.0000000000009 − 1.4 · 10−12i 0.2359507533599 + 2.885154863850i

IR pole 1.0000000000000 0.2359507533772 + 2.885154863852i

Table 5: Comparison of the renormalised two-loop amplitude for gg → Z Z , normalised to the finite one-loop
amplitude, and the infrared (IR) pole prediction at a phase space point given by Eq. (6) with

√
s ≈ 210 GeV

and θ ≈ 114◦, with µ = mZ .

gg → WW gg → Z Z
LLLL LRLL LLLL LRLL

CA

CF

Table 6: Plots of normalised, two-loop remainders defined in Eq. (12) for the two processes for the two
independent helicity configurations and colour factors. The kinematic variables are defined in Eq. (6) and
µ = mV where V = W, Z respectively.

as a function of β and cos θ as defined in Eq. (6). The plots are given in Table 6. Finally, for V = Z
we have cross-checked our final remainders against the results of Ref. [21], which employs analytic
IBP reduction and sector decomposition, as well as the results of Ref. [18] which uses expansion
by regions for both low- and high energy.
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