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1. Introduction

Increasing integrated luminosity at the Large Hadron Collider (LHC) in the coming decade
will drive experimenters’ search for physics beyond the Standard Model (SM). The LHC will be
sensitive to ever-fainter discrepancies from SM predictions, thanks to increased statistics and to a
better understanding of systematic uncertainties. Greater experimental sensitivity does not suffice.
We also need higher-precision calculations in perturbative QCD to reduce theoretical uncertainties.

The current frontier for perturbative QCD calculations is at next-to-next-to-leading order
(NNLO), where one expects a reduction in these latter uncertainties to below a few percent.

We explore a technique for computing certain contributions to a simple class of two-loop
Yang–Mills amplitudes, the so-called “all-plus” amplitudes, with all external gluons of identical
helicity. This technique is based on a conjecture by Badger, Mogull and Peraro (BMP) in ref. [1].
It relies solely on well understood one-loop generalized unitarity technology, and turns out to apply
to all partial amplitudes in the color decomposition, in particular also to the nonplanar ones. We
have given a much more detailed discussion of our calculations in ref. [2].

2. All-Plus Amplitudes

All-plus amplitudes are simpler than general two-loop amplitudes. At tree level, they vanish.
At one-loop, the dimensionally regulated amplitude (𝐷 = 4 − 2𝜖) can be decomposed in a form
exposing its universal singular structure [3–6],

𝐴(1) = 𝐴(0) 𝐼 (1) + 𝐹 (1) + O(𝜖) . (1)

Here, 𝐼 (1) is a universal function of the Lorentz invariants with double and single poles in 𝜖 . The
vanishing of the tree makes one-loop amplitudes free of ultraviolet and infrared divergences. Indeed
the latter are purely rational in the external spinors [7–12]. For the leading-color partial amplitude,
an all-𝑛 conjecture ref. [9] came from demanding correct collinear factorization,

𝐴(1) (1+ . . . 𝑛+) = −1
3

∑
1≤𝑖< 𝑗<𝑘<𝑙≤𝑛 ⟨𝑖 | 𝑗 𝑘𝑙 |𝑖]

⟨12⟩ ⟨23⟩ . . . ⟨(𝑛 − 1)𝑛⟩ ⟨𝑛1⟩ + O(𝜖) , (2)

a form which was later proven in ref. [11], and rederived in ref. [12]. The subleading-color ampli-
tudes at one-loop can always be obtained from the leading-color ones through color relations [13].
Compact forms for them are also known [9, 14]. Their finiteness and absence of branch-cuts makes
these expressions more like tree-level amplitudes than one-loop ones.

The four-point all-plus amplitude at two loops was computed long ago in ref. [15]; the five-point
one was derived much later [16–20]. The full six-gluon amplitude was derived in refs. [24], and
there exist partial seven-gluon [25] and 𝑛-gluon expressions [26]. More recently, first results for the
four-gluon amplitude at three loops have been derived in refs. [27, 28].

As in the one-loop case, two-loop amplitudes can be decomposed with respect to their singu-
larity structure [29], which leads us to a relation similar to that of eq. (1),

𝐴(2) = 𝐴(0) 𝐼 (2) + 𝐴(1) 𝐼 (1) + 𝐹 (2) + O(𝜖). (3)
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Here, 𝐼 (2) is (like 𝐼 (1) ) a universal function of the Lorentz invariants with divergences up to 𝜖−4;
𝐼 (1) is the same function as in eq. (1). The remainder 𝐹 (2) is finite in dimensional regularization,
and can be split into polylogarithmic and rational parts 𝑃 (2) and 𝑅 (2) ,

𝐹 (2) = 𝑃 (2) + 𝑅 (2) . (4)

Two-loop all-plus amplitudes have singularities in dimensional regularization of the same degree
as general one-loop amplitudes. The polylogarithmic part 𝑃 (2) has ordinary branch cuts, and may
therefore be computed using four-dimensional generalized unitarity. In contrast, the rational part
𝑅 (2) does not contain such discontinuities and requires separate treatment.

The structure of the all-plus amplitude at two loops has made it possible to compute the
polylogarithmic terms for an arbitrary number of external gluons for the leading-color [23] and a
special subleading-color partial amplitude [26]. In addition, the authors of refs. [14, 21–25] used
recursive techniques to compute the rational terms in the five- and six-point amplitudes at leading
and subleading color, as well as the leading-color seven-point amplitude [25]. Dunbar, Perkins, and
Strong (DPS) presented an all-𝑛 conjecture [26] for the special subleading-color amplitude. BMP [1]
have also computed the leading-color five- and six-point rational parts through a reconstruction of
the integrand. In addition, they presented a conjecture for the all-𝑛 integrand at leading color on
which we shall rely in our calculations.

3. Separability

In dimensional regularization, scattering amplitudes generally depend on two types of dimen-
sional parameter: the dimension of loop-momentum integrations, 𝐷; and 𝐷𝑠, which controls the
number of states, with 𝐷𝑠 ≥ 𝐷. Integrands of loop amplitudes depend polynomially on 𝐷𝑠, while
integrals depend in a general analytic fashion on 𝐷. The conjecture of BMP [1] is given in terms
of the all-plus amplitude’s dependence on the dimension 𝐷𝑠.

To extract this dependence, we follow a modified approach originally introduced in ref. [15],
and later exploited at one loop in ref. [30] and at two loops by BMP [1] to help isolate rational
contributions. An all-loop discussion can be found in ref. [31].

Any two-loop amplitude 𝐴
(2)
𝐷𝑠

in Yang–Mills theory can be written as a quadratic polynomial
in 𝐷𝑠. By computing the amplitude for three different (ideally integer) values of 𝐷𝑠, we can fix
the coefficients of this polynomial, allowing us to interpolate to non-integer 𝐷𝑠. We refer to this
method as dimensional reconstruction.

Choosing 𝐷𝑠 = 6, 7, 8 as sampling dimensions, we can determine 𝐴
(2)
𝐷𝑠

[31],

𝐴
(2)
𝐷𝑠

= 𝐴
(2)
0 + (𝐷𝑠 − 6)𝐴(2)

1𝑠 + (𝐷𝑠 − 6)2𝐴
(2)
2𝑠 + (𝐷𝑠 − 6) (𝐷𝑠 − 5)𝐴(2)

× . (5)

Here, 𝐴(2)
0 , 𝐴(2)

1𝑠 , 𝐴(2)
2𝑠 , and 𝐴

(2)
× are six-dimensional amplitudes with either two gluons (𝐴(2)

0 ), one
gluon and one scalar (𝐴(2)

1𝑠 ), or two scalars running in the loops (𝐴(2)
2𝑠 , 𝐴(2)

× ). The difference between
𝐴
(2)
2𝑠 and 𝐴

(2)
× lies in the way the two scalar loops are connected. In the former, they interact through

the exchange of a gluon, while in the latter they are connected by a four-scalar contact term [31].
In six dimensions, there are four different gluon polarization states. The scalars arise via

Kaluza–Klein reduction from the additional polarization states of seven- and eight-dimensional
gluons, and are massless in six dimensions.
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Figure 1: The generic of one-loop squared cuts contributing to 𝑅
(2)
𝑠𝑠 .

In ref. [1], BMP show how to decompose the leading-color two-loop all-plus amplitudes
into polylogarithmic terms 𝑃

(2)
𝑛:1 and rational parts 𝑅

(2)
𝑛:1 associated to different powers of the state

dimension 𝐷𝑠. More precisely, through O(𝜖0), BMP conjectured that these terms are always
associated to different powers of 𝐷𝑠 − 2,

𝐹
(2)
𝑛:1 (1

+ . . . 𝑛+) = 1
2 (𝐷𝑠 − 2)𝑃 (2)

𝑛:1 (1
+ . . . 𝑛+) + 1

4 (𝐷𝑠 − 2)2𝑅
(2)
𝑛:1 (1

+ . . . 𝑛+) + O(𝜖) . (6)

BMP verified this decomposition for the five- and six-gluon leading color partial amplitudes.
Assuming this conjecture, we can use dimensional reconstruction to express the leading-color

rational part in terms of six-dimensional amplitudes’ rational parts. Comparing eqs. (5) and (6),

𝑅
(2)
𝑛:1 (1

+ . . . 𝑛+) = 4
[
𝑅
(2)
2𝑠 + 𝑅

(2)
×

]
≡ 4𝑅 (2)

𝑠𝑠 , (7)

where 𝑅
(2)
2𝑠 , 𝑅 (2)

× are the rational parts of 𝐴(2)
2𝑠 and 𝐴

(2)
× , and 𝑅

(2)
𝑠𝑠 is a shorthand for their sum.

Phrasing the BMP conjecture in the dimensional reconstruction picture means we only need the
rational part 𝑅 (2)

𝑠𝑠 . The scalar Feynman rules forbid diagrams with propagators carrying both loop
momenta. All contributing two-loop Feynman integrals then factorize into a product of one-loop
integrals. We can then determine the two-loop rational parts 𝑅 (2)

𝑠𝑠 —and therefore 𝑅 (2) (1+ . . . 𝑛+)—
using only one-loop generalized unitarity techniques, in what we call the separable approach.

We wish to compute the rational part 𝑅 (2)
𝑠𝑠 using one-loop 𝐷-dimensional generalized unitarity.

As all integrals have to factorize, we can limit ourselves to a basis of integrals which factorize as
well. Box, triangle and bubble integrals form a basis of one-loop Feynman integrals. A basis of
factorizing two-loop integrals is therefore given by all integrals of the following six topologies,

. (8)

We use generalized unitarity cuts in each loop to determine the coefficients of these types of
integrals, following refs. [32, 33]. A generic “one-loop squared” cut contributing to the leading-
color rational part is shown in Fig. 1. The dashed lines represent the internal six-dimensional scalar
loop propagators that are cut, while the circles are six-dimensional, color-ordered, on-shell tree
amplitudes. To compute the coefficient of each integral, we treat the loops sequentially. The first
loop is computed from tree amplitudes using standard one-loop unitarity techniques; the second
loop is computed from tree amplitudes and the coefficient computed at the first step, with the latter
playing the role of a tree amplitude. In the second step, we again use one-loop unitarity. As the
loops are equivalent we are free to choose, which loop is computed first, and which one second.
The coefficient of the required two-loop integral is then the result of this two-stage computation.
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The BMP conjecture leads to the separable approach for leading-color amplitudes [1]. We
extend the conjecture to the rational contributions of subleading-color partial amplitudes as well,
specifically the nonplanar ones. That is, the nonplanar rational part 𝑅 (2)

𝑠𝑠 is related to the nonplanar
two-loop rational parts of all-plus amplitudes as in eq. (7). Furthermore, thanks to the factorization
of the loop integrals, we only require one-loop generalized-unitarity technology.

4. Cuts for Color Structures

We compute 𝑅 (2)
𝑠𝑠 for nonplanar amplitudes via color-dressed unitarity, similar to the procedure

for polylogarithmic contributions in refs. [14, 24, 26]. We can write a complete two-loop SU(𝑁𝑐)
Yang–Mills amplitude as follows [14, 24],

A (2)
𝑛 = 𝑁2

𝑐

∑︁
𝜎∈𝑆𝑛/𝑍𝑛

ITr
(
𝜎(1 . . . 𝑛)

)
𝐴
(2)
𝑛:1

(
𝜎(1 . . . 𝑛)

)
+ 𝑁𝑐

⌊𝑛/2⌋+1∑︁
𝑟=3

∑︁
𝜎∈𝑆𝑛/𝑃𝑛:𝑟

ITr
(
𝜎(1 . . . (𝑟 − 1))

)
ITr

(
𝜎(𝑟 . . . 𝑛)

)
𝐴
(2)
𝑛:𝑟

(
𝜎(1 . . . (𝑟 − 1); 𝑟 . . . 𝑛)

)
+

⌊𝑛/2⌋∑︁
𝑟=2

⌊ (𝑛−𝑟 )/2⌋∑︁
𝑘=𝑟

∑︁
𝜎∈𝑆𝑛/𝑃𝑛:𝑟,𝑘

ITr
(
𝜎(1 . . . 𝑟)

)
ITr

(
𝜎((𝑟 + 1) . . . (𝑟 + 𝑘))

)
ITr

(
𝜎((𝑟 + 𝑘 + 1) . . . 𝑛)

)
× 𝐴

(2)
𝑛:𝑟 ,𝑘

(
𝜎(1 . . . 𝑟; (𝑟 + 1) . . . (𝑟 + 𝑘); (𝑟 + 𝑘 + 1) . . . 𝑛)

)
+

∑︁
𝜎∈𝑆𝑛/𝑍𝑛

ITr
(
𝜎(1 . . . 𝑛)

)
𝐴
(2)
𝑛:1B

(
𝜎(1 . . . 𝑛)

)
,

(9)

where the 𝑃𝑛:𝑟 and 𝑃𝑛:𝑟 ,𝑘 account for exchanges of the traces, as well as cyclic permutations of
their arguments. The ITr(. . .) represent traces over the color generators. Interpreting factors of 𝑁𝑐

as empty traces, we can identify two distinct classes of color structures: those with three traces,
associated to 𝐴

(2)
𝑛:1 , 𝐴(2)

𝑛:𝑟 ,𝐴(2)
𝑛:𝑟 ,𝑘 , and those with just a single color trace, associated to 𝐴

(2)
𝑛:1B.

We can give a stringy heuristic argument for these two classes. Two-loop gauge theory
amplitudes can be obtained from the infinite-tension limit of genus-two open-string amplitudes.
External particles are realized through operator insertions on the boundary of the world-sheet. The
gauge group is introduced by dressing these insertions with Chan–Paton factors (in this case color
generators), which are contracted along the boundary.

Two types of genus-two surfaces contribute: the kind shown Fig. 2a has three boundaries, while
the type shown in Fig. 2b has only a single boundary. The former generates three color traces, and

(a) (b)

Figure 2: The two types of genus two surfaces contributing to open-string amplitudes. The one on the left
has three boundaries, and generates three color traces. The one on the right has only a single boundary,
therefore generating only one such trace.

can be interpreted as the origin of partial amplitudes 𝐴(2)
𝑛:1 , 𝐴(2)

𝑛:𝑟 , 𝐴(2)
𝑛:𝑟 ,𝑘 . The latter can only generate
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a single trace, and is therefore associated to the 𝐴
(2)
𝑛:1B partial amplitudes. This string theory picture

leads to one-loop squared cuts for the different color structures.
To determine 𝑅

(2)
𝑠𝑠 for three-trace amplitudes, we use cuts of form shown in Fig. 1. We identify

the outer and two inner edges of the cut with the three color traces, attaching the external gluons to
them accordingly. This principle alongside the string theory motivation is illustrated in Figs. 3a and
3b. We can check independently that dressing the color-ordered tree-amplitudes with their color
traces and some algebra leads to the correct trace structure. The full rational part 𝑅 (2)

𝑠𝑠 is then the
sum over unique cuts, taking into account all associations of traces to the three edges.

To obtain 𝑅
(2)
𝑠𝑠 for subleading single-trace amplitudes, we have to find cuts generated by the

single-edge surface of Fig. 2b. We can smoothly deform this surface to an equivalent form, shown in
Fig. 3c. From this it is easy to identify the associated unitarity cuts, see Fig. 3d. The key difference
from the cuts for three traces is the attachment of the scalar lines: while before the two lines are
separated at the connecting tree amplitude, they now cross. The subleading single-trace rational
part 𝑅 (2)

𝑠𝑠 is then given by the sum over all unique cuts of this form.
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Figure 3: A graphical representation of the heuristic relation between the string world-sheet and unitarity
cuts of subleading amplitudes. The configuration shown in (a) and (b) corresponds to the color structure
ITr(1, 2, 3, 4, 5, 6) ITr(7, 8, 9) ITr(10, 11, 12). Figures (c) and (d) correspond to the single-trace structure
ITr(1, 2, . . . , 11, 12). In the latter two, the dotted lines need to be sewn together according to the arrows
shown.

5. Verification

We verify the separability conjecture using an automated generation of nonplanar cuts in
Mathematica. Their evaluation is carried out using the one-loop 𝐷-dimensional unitarity techniques
presented in refs. [32, 33]. This procedure is also automated in Mathematica using a custom series
expansion code specialized for the type of rational functions that appear. The code is capable
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of handling numerical (rational), as well as analytically parametrized, kinematics. All numeric
comparisons were done exactly on rational kinematic points1.

Using our code we find exact numerical agreement of the separable construction with all known
analytic results in the literature. We compared the rational parts of all four, five, and six-gluon partial
amplitudes of refs. [14, 21–25], as well as the leading color seven-gluon amplitude of ref. [25].
Using kinematics based on parametrized momentum twistors, we also rederived closed analytic
forms for all five-gluon rational terms. We further verified numerically up to nine gluons the
agreement with the conjecture for the rational parts of the subleading single-trace amplitudes [26].

6. Conclusions

In this proceeding, we have explored rational terms in two-loop amplitudes. These terms
exhibit the least symmetry or structure of all contributions to Yang–Mills amplitudes. We studied
the simplest such terms, in the all-plus gluon amplitudes. We relied on the BMP separability
conjecture and used a straightforward extension of generalized unitarity techniques for computing
one-loop rational terms in order to compute them. We computed the rational terms in the four-
and five-point two-loop amplitudes analytically, and those in the six- and seven-point amplitudes
numerically. Our results agree with those obtained by Dunbar, Dalgleish, Jehu, Perkins and Strong
through a recursive approach. They also agree numerically with the DPS all-𝑛 conjecture [26] for
the subleading-color single-trace amplitude at eight and nine points. In addition to evidence for
the correctness of the results in refs. [14, 24, 25], our calculations also provide evidence for the
correctness of the separability conjecture [1] both for leading- and subleading-color amplitudes.
The ideas developed here may also help simplify the calculation of other rational terms at two loops,
in particular in the other simple helicity configuration, with a lone negative-helicity gluon.
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