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Figure 1: Different LO Electroweak corrections to Higgs boson production in gluon fusion.

1. Introduction & motivations

Since its discovery in 2012 [1, 2], the Higgs boson has been one of the most studied objects of
contemporary particle physics. In order to probe its properties, both unprecedented precision and
accuracy in experimental measurements and state-of-the-art theoretical predictions are required.

The LHC is at present the main (and only) Higgs boson factory, where Higgs bosons are
produced by colliding protons. In particular, gluon fusion represents the main production mode,
contributing alone more than 80% to the total cross section [3]. In light of the next High-Luminosity
phase of the LHC we expect the experimental relative uncertainty for many gluon-initiated Higgs
production modes to decrease to the level of the percent. In order to match this advancement
in experimental results, theoretical prediction must provide results with competitive theoretical
uncertainties of the order of ≲ 1%.

A huge computational effort has been invested in the last decade on the theoretical description
of Higgs boson production through gluon fusion, which is now known up to N3LO in pure QCD in
the limit of infinite top-quark mass [4, 5]. To make full use of such astonishing result, sub-leading
contributions have to be properly addressed and included in theoretical predictions.

As explained in [5, 6], the remaining sources of uncertainties are given by the lack of N3LO
PDF sets, the approximate estimate of NLO mixed QCD-Electroweak corrections, the missing
quark-mass effects beyond NLO, and the error associated to the truncation in 1/𝑚𝑡 at NNLO. While
the 1/𝑚𝑡 uncertainty has been recently removed thanks to [7], the remaining uncertainties amount
each to 1%.

In this contribution, based on [8, 9], we focus on the mixed QCD-Electroweak contributions
to Higgs plus jet production at the LHC. Electroweak corrections can contribute with two class
of diagrams to gluon fusion, as depicted in Figure 1 [10–12]: on the one hand electroweak gauge
bosons appear as insertions on the top quark loop connecting the gluons to the Higgs boson, and
on the other hand the Electroweak bosons can act as a bridge between the fermion loop and the
Higgs boson. At LO, while the first class of contributions, proportional to the top-quark Yukawa
coupling, contributes for just half a percent compared to the LO term in pure QCD, the diagrams
proportional to 𝛼2𝑣 increase the total cross section by more than 5% of the LO QCD predictions.

Different approximations have been employed to address the NLO mixed QCD-Electroweak
corrections, such as Higgs effective field theories employing the limit 𝑚𝑡 , 𝑚𝑊 , 𝑚𝑍 ≫ 𝑚𝐻 [13]
or the limit 𝑚𝑊 = 𝑚𝑍 = 0 [14]. Since QCD effects in Higgs physics can be quite large (up
to +100%, as seen in the pure QCD case) such approximations pose a problem both in terms of
theoretical uncertainties (from which the 1% mentioned above) and in terms of physical parameters.
An analytic computation with full Electroweak boson mass dependence is therefore mandatory to
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Figure 2: Representative Feynman diagrams for 𝑔𝑔𝐻𝑔 (left) and 𝑞𝑞𝐻𝑔 (central and right) contributions.
The leftmost and central diagrams feature closed fermion loops, while the rightmost has a single open fermion
line.

properly control the theoretical uncertainty associated to such contributions.

2. Tensor structure decomposition

We are interested in the inclusive production of a Higgs boson starting from protons, therefore
we need to consider both gluon-initiated and quark-initiated processes in the partonic interaction.
The 2-loop LO and 3-loop virtual NLO corrections to 𝑔𝑔 → 𝐻 have been computed in [10–12, 15]
and [16], respectively, while the 1-loop LO quark-initiated contributions 𝑞𝑞𝑔𝐻 and the related
1-loop real contributions 𝑞𝑞𝐻𝑔𝑔 and 𝑞𝑞𝐻𝑞𝑞 have been addressed in [17]. This leaves the two-loop
𝑔𝑔𝐻𝑔 and 𝑞𝑞𝐻𝑔 contributions still to be evaluated.

We start by decomposing the amplitudes into a linear combination of tensor structures, the
coefficients being the form factors. Due to the presence of 𝑊 and 𝑍 bosons interacting with quarks
the amplitude might contain terms explicitly depending on 𝛾5 or the Levi-Civita pseudo-tensor.
When the Electroweak bosons are attached to a closed fermion loop (as in the left and central
diagrams of Figure 2) the contributions proportional to 𝛾5 cancel themselves once we sum over
complete generations of quarks, while in case of a single open fermion line (as in the right diagram
of Figure 2) we can consider polarized external states and employ a 𝛾5 scheme preserving anti-
commutativity to move the 𝛾5 until it gets contracted with a polarized spinor. The neat effect of
these procedures is that we retrieve the same tensor structures that we would employ in the pure
QCD case for the same external states, while the chiral effects are embedded into a rescaling of the
coupling constants. We obtain

M = 𝑓 𝑐1𝑐2𝑐3𝜖
𝜇

𝜆1
(p1)𝜖𝜈𝜆2

(p2)𝜖𝜌𝜆3
(p3)

[
F1𝑔𝜇𝜈𝑝2𝜌 + F2𝑔𝜇𝜌𝑝1𝜈 + F3𝑔𝜈𝜌𝑝3𝜇 + F4𝑝3𝜇𝑝1𝜈 𝑝2𝜌

]
, (1)

F1...4 = 4𝐹1...4,𝑚𝑊
+ 2

cos4 𝜃𝑊

(
5
4
− 7

3
sin2 𝜃𝑊 + 22

9
sin4 𝜃𝑊

)
𝐹1...4,𝑚𝑍

, (2)

for the purely gluonic case and

Mopen
𝐿

= 𝑇
𝑐3
𝑖1𝑖2

(
2

cos4 𝜃𝑊
𝑄2

𝑞 sin4 𝜃𝑊

)
𝑣𝑠1 (p1)P𝐿

[
𝜏1,𝜇𝐴

open
1,𝑚𝑍

+ 𝜏2,𝜇𝐴
open
2,𝑚𝑍

]
𝑢𝑠2 (p2)𝜖𝜆3

𝜇 (p3) , (3)

Mopen
𝑅

= 𝑇
𝑐3
𝑖1𝑖2

𝑣𝑠1 (p1)
{
P𝑅

[
𝜏1,𝜇𝐴

open
1,𝑚𝑊

+ 𝜏2,𝜇𝐴
open
2,𝑚𝑊

]
+

+ 2
cos4 𝜃𝑊

(
𝑇𝑞 −𝑄𝑞 sin2 𝜃𝑊

)2
P𝑅

[
𝜏1,𝜇𝐴

open
1,𝑚𝑍

+ 𝜏2,𝜇𝐴
open
2,𝑚𝑍

]}
𝑢𝑠2 (p2)𝜖𝜆3

𝜇 (p3) ,
(4)
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p1

p2 p3

p4

(a) T1: INB (1, 1, 1, 1, 0, 1, 1, 1, 0)

p1

p2 p3

p4

(b) T2: INA (1, 1, 1, 1, 1, 1, 1, 0, 0)

p1

p2 p3

p4

(c) T3: IPL (0, 1, 1, 1, 1, 0, 1, 1, 1)

p1

p2 p3

p4

(d) T4: IPL (1, 1, 1, 1, 0, 0, 1, 1, 1)

p1

p2 p3

p4

(e) T5: IPL (0, 1, 1, 1, 1, 1, 1, 1, 0)

p1

p2 p3

p4

(f) T6: IPL (1, 1, 1, 1, 1, 1, 1, 0, 0)

Figure 3: The six top sectors appearing in the amplitude. Straight (wavy) lines denote massless (massive)
propagators. The dashed line indicates the Higgs boson.

Mclosed = 𝑇
𝑐3
𝑖1𝑖2

1
2
𝑣𝑠1 (p1)

{
4
[
𝜏1,𝜇𝐹

closed
1,𝑚𝑊

+ 𝜏2,𝜇𝐹
closed
2,𝑚𝑊

]
+ 2

cos4 𝜃𝑊
×

×
(
5
4
− 7

3
sin2 𝜃𝑊 + 22

9
sin4 𝜃𝑊

) [
𝜏1,𝜇𝐹

closed
1,𝑚𝑍

+ 𝜏2,𝜇𝐹
closed
2,𝑚𝑍

]}
𝑢𝑠2 (p2)𝜖𝜆3

𝜇 (p3) ,
(5)

𝜏1,𝜇 = /𝑝3𝑝2𝜇 − 𝑝2 · 𝑝3𝛾𝜇 , 𝜏2,𝜇 = /𝑝3𝑝1𝜇 − 𝑝1 · 𝑝3𝛾𝜇 , (6)

for the quark-initiated process. Notice that in the case with an open quark line the rescaling of the
coupling constants depends explicitly on the quarks polarization.

Once the tensor structures of the amplitudes have been determined we construct and apply
projectors to extract the form factors 𝐹𝑗 and 𝐴 𝑗 .

3. Evaluation of the form factors

The form factors 𝐹𝑗 and 𝐴 𝑗 are extracted by applying projectors to the amplitudes, and are
expressed in terms of two-loop Feynman integrals, whose top sectors, up to permutations of the
external legs, are depicted in Figure 3. The 𝑔𝑔𝐻𝑔 channel can be described in terms of the T2 and
T6 top sectors only, why the 𝑞𝑞𝐻𝑔 contribution requires all the six top sectors. As a consequence,
the 𝑔𝑔𝐻𝑔 amplitude consists of 61 master integrals, while the 𝑞𝑞𝐻𝑔 amplitude requires 30 more.
The presence of internal massive lines associated to the Electroweak vector bosons generates the
eight different square roots

𝑟 = 𝑚2
ℎ

√︃
1 − 4𝑚2

𝑉
/𝑚2

ℎ
, 𝑟𝑢𝑠𝑡 =

√︃
𝑠2𝑢2 + 2𝑠𝑢(𝑡 − 𝑠)𝑚2

𝑉
+ (𝑠 + 𝑡)2𝑚4

𝑉
,

𝑟𝑡 =

√︃
𝑟2 − 4𝑚2

𝑉
𝑠𝑢/𝑡 , 𝑟𝑠𝑢𝑡 =

√︃
𝑠2𝑢2 + 2𝑠𝑢(𝑡 − 𝑢)𝑚2

𝑉
+ (𝑡 + 𝑢)2𝑚4

𝑉
,

(7)
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⇒
D = 6

+ + + + . . .

Figure 4: Decomposition of the master integral IPL (0, 1, 1, 0, 0, 1, 1, 1, 0) in terms of a finite candidate and
(divergent) sub-graphs.

𝑟𝑢 =

√︃
𝑟2 − 4𝑚2

𝑉
𝑠𝑡/𝑢 , 𝑟𝑠𝑡𝑢 =

√︃
𝑠2𝑡2 + 2𝑠𝑡 (𝑢 − 𝑡)𝑚2

𝑉
+ (𝑡 + 𝑢)2𝑚4

𝑉
,

𝑟𝑡𝑢 =

√︃
1 − 4𝑚2

𝑉
/(𝑡 + 𝑢) , 𝑟𝑢𝑡𝑠 =

√︃
𝑢2𝑡2 + 2𝑢𝑡 (𝑠 − 𝑡)𝑚2

𝑉
+ (𝑠 + 𝑡)2𝑚4

𝑉
,

(8)

which, to our knowledge, are not all simultaneously rationalisable. We observe though, that for a
single master integral no more than three square roots appear, and in all these cases these sub-sets
can be simultaneously rationalised.

We derive the differential equations w.r.t. 𝑡, 𝑢, 𝑚2
ℎ
, and 𝑚2

𝑉
for the master integrals and

we manage to obtain an 𝜖-factorized d log-form for the matrix of coefficients in the 𝑔𝑔𝐻𝑔 case.
Despite this encouraging result, to evaluate the top-sector master integrals we need to combine
expressions containing different parametrizations, ultimately leading to very large results which
made the computation of the highest 𝜖-orders practically impossible.1 We turn then to the direct
integration of the master integrals over Feynman–Schwinger parameters. This approach saves us
from integrating over square roots thanks to the fact that our top sectors (and consequently the
master integrals) are linearly reducible [19], i.e. there exists an integration order over the Feynman–
Schwinger parameters such that each integration returns a hyperlogarithm of rational argument in
the next integration variable. In this way we always integrate over d log kernels, obtaining results
expressed in terms of multiple polylogarithms (also known as Goncharov polylogarithms, or GPLs),
and integration over square roots might appear at most during the last integration, dispensing us
from rationalising the expressions.2

In full generality, our two-loop master integrals can present divergencies in the dimensional
regularisation parameter 𝜖 = (4 − 𝑑)/2 up to 𝜖−4, while we expect the 𝑔𝑔𝐻𝑔 amplitude to be
finite and the 𝑞𝑞𝐻𝑔 one to show at most 𝜖−2 poles. In order to exploit the milder pole structure
of the amplitudes we look for a (quasi-)finite basis of master integrals, constructing candidates by
removing both UV and IR divergencies: UV divergencies can be removed by raising the power
of massive denominators until a negative superficial degree of divergence is reached, while IR
divergencies are mitigated by shifting dimensions from 𝑑 = 4 − 2𝜖 to 𝑑 = 6 − 2𝜖 [20, 21] (cfr.
Fig. 4). The removal of IR divergencies can be understood considering that the dimensional shift
generates a Gram determinant, which is essentially a collection of scalar products containing loop
momenta cancelling the IR singularities coming from the scalar products in the denominators. By
applying this procedure to the master integrals with more than four propagators we manage to
decompose them into a finite integral plus some divergent sub-graphs. This decomposition can

1It is still possible to solve the system of differential equations in terms of GPLs without square roots when considering
the planar top sector T6 only, as done in [18].

2The GPLs will contain explicit square roots in the arguments, but this poses no issues.
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produce explicit pole cancellation already before substituting the expressions of the master integrals,
and in general allows for fewer 𝜖-orders of the master integrals to be computed. As a last remark,
attention has to be taken in the choice of a (quasi-)finite basis that does not worsens the 𝜖-pole
structure of the coefficients of the master integrals themselves, ultimately resulting in more orders
of to be computed.

We compute the analytic 𝜖-expansions of the master integrals using HyperInt [19] and insert
them in the form factors. In the 𝑞𝑞𝐻𝑔 case we proceed by renormalizing 𝛼𝑆 in the MS scheme
and removing the IR poles by subtracting the LO amplitude multiplied by the Catani operator I(1)

𝑞𝑞𝑔
,

which describes the universal IR behavior of QCD, see [22].

The 𝜖-finite parts of the form factors are still large expressions difficult to handle at this stage.
Such results are linear combinations of GPLs, whose coefficients are algebraic expressions of the
kinematics and the masses. The first step towards the simplification of these expressions is to find
a basis of algebraic prefactors. This procedures starts applying the partial fraction decomposition
algorithm described in [23] to find a basis of algebraic "monomials" without inserting spurious
poles, followed by the reduction of the prefactors to a basis using the common set of monomials as
a vector space. Now that no further relations can be found among the prefactors, we numerically
search for zeroes and null linear combinations among the transcendental expressions, using the
results also to express higher weight GPLs in terms of lower weight ones. The expressions obtained
after this process are smaller, both in size and number of functions, shrinking from more than 1 GiB
to about 1 MiB, see Table 1 for details.

As a last step for the 𝑔𝑔𝐻𝑔 case we use symbol techniques to rewrite the GPLs up to weight 3
in terms of logs, Li2s, and Li3s, and make their analytic continuation explicit in the physical region
𝑠 > 𝑚2

ℎ
> 0, 𝑡, 𝑢 < 0, 𝑚2

𝑉
< 𝑚2

ℎ
< 4𝑚2

𝑉
. In this way we obtain expressions optimized for fast and

stable numerical evaluations.

To provide physical results we construct the helicity amplitudes for the 𝑔𝑔𝐻𝑔 and 𝑞𝑞𝐻𝑔

processes. We prefer such expressions over the form factors since they are more directly related to
observables and so present in general a simpler structure.

In the 𝑔𝑔𝐻𝑔 case, only two non-zero independent helicity amplitudes exist:

A𝑔𝑔𝐻𝑔
+++ =

𝑚2
ℎ√

2⟨12⟩⟨23⟩⟨31⟩
𝑠𝑢

𝑚2
ℎ

(
F1 +

𝑡

𝑢
F2 +

𝑡

𝑠
F3 +

𝑡

2
F4

)
, (9)

A𝑔𝑔𝐻𝑔
++− =

[12]3
√

2𝑚2
ℎ
[13] [23]

𝑢𝑚2
ℎ

𝑠

(
F1 +

𝑡

2
F4

)
. (10)

For the 𝑞𝑞𝐻𝑔 we have also have only two non-zero independent helicities:

A𝑞𝑞𝐻𝑔

𝑅𝐿+ =

{
1
2

[
4F closed

1,𝑚𝑊
+ 2

cos4 𝜃𝑊

(
5
4
− 7

3
sin2 𝜃𝑊 + 22

9
sin4 𝜃𝑊

)
F closed

1,𝑚𝑍

]
+

+
[
F open

1,𝑚𝑊
+ 2

cos4 𝜃𝑊

(
𝑇𝑞 −𝑄𝑞 sin2 𝜃𝑊

)2
F open

1,𝑚𝑍

]}
𝑠
√

2
[23]2

[12] ,
(11)

6
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Original Partial reduction Monomial reduction Basis No zeroes

�̃�
open, (1)
1, 𝜖 0 8 (31) 7 (31) 7 (24) 6 (24) 6 (24)

�̃�
open, (1)
2, 𝜖 0 8 (33) 7 (33) 7 (30) 6 (30) 5 (24)

�̃�
open, (1)
1, 𝜖 1 23 (70) 18 (70) 18 (50) 12 (50) 9 (21)

�̃�
open, (1)
2, 𝜖 1 22 (58) 16 (58) 16 (43) 12 (43) 9 (22)

�̃�
open, (1)
1, 𝜖 2 45 (87) 26 (87) 26 (65) 17 (65) 12 (37)

�̃�
open, (1)
2, 𝜖 2 44 (73) 23 (73) 23 (58) 17 (58) 10 (22)

�̃�1 46 (45) 22 (45) 22 (28) 15 (28) 10 (17)
�̃�2 46 (45) 22 (45) 22 (28) 15 (28) 10 (17)
�̃�
𝑁𝑐

1, 𝜖 0 1410 (1454) 234 (1294) 234 (1093) 134 (1093) 100 (983)
�̃�
𝑁𝑐

2, 𝜖 0 1413 (1389) 213 (1285) 213 (1186) 134 (1186) 117 (1169)
�̃�

1/𝑁𝑐

1, 𝜖 0 5526 (6789) 1174 (6788) 1100 (5177) 690 (3823) 325 (983)
�̃�

1/𝑁𝑐

2, 𝜖 0 5524 (5905) 1139 (5894) 1139 (4604) 784 (4517) 460 (1169)

�̃�1 4 (7) 4 (7) 4 (7) 4 (7) 4(7)
�̃�2 4 (7) 4 (7) 4 (7) 4 (7) 4(7)
�̃�1 43 (104) 35 (104) 32 (98) 30 (98) 30 (95)
�̃�2 41 (188) 34 (188) 33 (184) 30 (184) 30 (123)
�̃�1 67 (161) 64 (161) 61 (151) 54 (151) 54 (151)
�̃�2 93 (601) 91 (601) 89 (513) 54 (346) 54 (136)

Table 1: Number of linearly-independent rational prefactors (and rational monomials) at different stages of
the reduction procedure for the 𝑞𝑞𝐻𝑔 amplitude. We list the first three non-zero orders �̃� in the 𝜖 expansion
for the LO amplitude, followed by the different component of the two-loop NLO amplitude and then by the
different parts of the two-loop finite remainder.

A𝑞𝑞𝐻𝑔

𝐿𝑅+ =

{
1
2

[
4F closed

2,𝑚𝑊
+ 2

cos4 𝜃𝑊

(
5
4
− 7

3
sin2 𝜃𝑊 + 22

9
sin4 𝜃𝑊

)
F closed

2,𝑚𝑍

]
+

+
[

2
cos4 𝜃𝑊

𝑄2
𝑞 sin4 𝜃𝑊F open

2,𝑚𝑍

]}
𝑠
√

2
[13]2

[12] .
(12)

We observe a weight drop in A𝑔𝑔𝐻𝑔
+++ with respect to the other helicity amplitudes: only GPLs up

to weight 3 are present here, instead of weight 4. This agrees with what was observed at two and
three loops in the 𝑔𝑔𝐻 case, where terms only up to weight 3 and 5, respectively, were observed
[15, 16]. Another important observation for the 𝑞𝑞𝐻𝑔 case is that for symmetry reasons we expect
F open/closed

1,𝑚𝑉
to be equal to F open/closed

2,𝑚𝑉
under a 𝑡 ↔ 𝑢 exchange. We do not impose of this property

explicitly, rather we use it to cross-check our results along the simplification chain described above.

4. Conclusions & outlook

The analytic calculations described in these proceedings are the last missing ingredient of the
NLO light-quarks mixed QCD-Electroweak corrections to Higgs boson production at the LHC.
This paves the way to the computation of the NLO hadronic cross section including Electoweak
effects, completing what was started in [24], where only the gluon-initiated case was considered
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at NLO. A complementary study will focus instead on the inclusion of top-quark contributions, in
order to fully address the effects and issues related to massive fermions coupling to Electroweak
bosons at NLO. This next step poses new and non-trivial challenges, such as non-factorisable terms
proportional to 𝛾5 and complex integral reductions and master integrals evaluation, which will now
depend on five parameters and contain many massive lines.

Acknowledgments. These contributions are based on [8, 9], by Erik Panzer, Vladimir A.
Smirnov, and Lorenzo Tancredi. M.B. is supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant no. 396021762 - TRR 257.
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