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1. Introduction

The method of differential equations is the main method used to compute Feynman integrals
for phenomenological use. It consist of doing a derivative with respect to a kinematic variable of
the members of the relevant integral family, and then map the results back to the original integrals
using IBP relations. This will give a system of coupled first-order differential equations, which in
principle can be solved using traditional methods. Yet a great amount of progress happened with
the introductions of canonical forms [2] of Feynman integrals, which are bases with the property
that differential equations has the form

∂

∂s
J = εA(s)J (1)

where J is the vector of master integrals, and where A(s) is a matrix free of dependence on the
space-time dimension. One additional requirement for canonical forms in the traditional sense is
the requirement that the entries of A are of d-log form, which means that they can be written as
s-derivatives of logarithms of algebraic function of s. If those algebraic functions are rational the
equation system can trivially be integrated up order by order in ε yielding results in the function
class of generalized polylogarithms.

Yet it is not all Feynman integrals that can be integrated to generalized polylogs, nor can they
all be brought to a canonical form in the traditional sense. A simple class of integrals for which that
is not possible are those known as elliptic, characterized by the presence of an elliptic curve at the
maximal cut. Such functions have been the object of intense study in recent years (see ref. [3] for
an overview and the references therein). Yet it is a good open question how much of the benefits
of canonical forms that can be made to apply beyond the polylogarithmic case. For the purpose
of these proceedings that refers specifically to eq. (1), and the goal is to make an algorithm that
can bring an arbitrary Feynman integral, polylogarithmic, elliptic, or beyond, to a form where its
differential equations are epsilon factorized.

This is inspired by a number of recent publications1 [4–6] in which various elliptic Feynman
integrals successfully have been put to such an epsilon factorized form.

Central to the approach discussed here is the idea of using combinations of maximal cuts
and varying integration contours to analyze Feynman integrals. This in itself is not new but
has a history [7–12] in the context of IBPs, differential equations, dimension shift relations, and
more. The work discussed here can be considered a continuation of the research direction of those
works. Likewise such ideas have been used in the past to find integrals with epsilon factorized
differential equations, by requiring that the integrals are pure on the maximal (and sub-maximal)
cuts [13–15], and the approch discussed in these proceedings reduce to that in the polylogarithmic
case. Additionally our approach is similar to methods used to find integrands in N=4 sYM theory
under the name of prescriptive unitarity [16, 17]. Finally we should mention the duality between
integrands and contours, and the related fact that the set of integrands spans a vector space, is
playing a significant role. That connection has been clarified in recent works on the relation
between Feynman integrals and the mathematical field of intersection theory2 [18, 19], from which
a lot of the notation here is borrowed.

1See also the talk and proceedings by Stefan Weinzierl.
2See also the talks and proceedings by Vsevolod Chestnov and Henrik Munch.
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Figure 1: The four elliptic examples considered in ref. [1]. These are three variations on the elliptic sunrise
integral, and the non-planar double triangle.

2. The algorithm

The approach to finding epsilon factorized differential equations discussed here is similar to
what has been used in the past for the polylogarithmic case, but formulated in a way that makes it
generalize to the elliptic case and beyond. We will write our family of Feynman integrals as

Ji = K
∫
C

uϕ̂idnz (2)

where u is a multivalued function, and ϕ̂ a rational function. Additionally we haveK as a prefactor,
C as an integration contour, and z as the n integration variables. That this form of the integrals exist
follows from the Baikov representation. In this language the claim is that if

Kuϕ̂i = σΦ̂i (3)

(where σ is a pure function, and Φ̂i an algebraic function), and additionally the period matrix

Pi j :=
∫
γj

Φ̂idnz (4)

is proportional to the unit matrix P = (2πi)nI then the integrals Ji will have differential equations
in ε-factorized form.

To apply this algorithm in practice we will write the integrals J as linear combination of a
known intermediate basis I as Ji = fi j Ij or correspondingly Φ̂i = fi jΦ̂int

j at the integrand level. In
that case P = (2πi)nI becomes a constraint, that uniquely will fix all the free coefficients fi j , giving
a basis with ε-factorized differential equations.

3. Example

In ref. [1] we did (in addition to two polylogarithmic warm-up examples) four elliptic examples,
all on the maximal cut, of the Feynman integrals depicted in fig. 1.

But for these proceedings we will look at a different example depicted on fig. 2, which we
will refer to as the elliptic box-triangle (ebt). Such integrals will be of relevance for for instance
NNLO QCD corrections to double-top production at hadron colliders. Its kinematics is such that
p2

1 = p2
2 = 0, p2

3 = p2
4 = m2, (p1+p2)

2 = s, (p2+p3)
2 = t, and it is defined by the propagators

D1 = (k1−p1−p2)
2 − m2 , D3 = k2

1 − m2 , D5 = (k2+p3)
2 ,

D2 = (k1−p1)
2 − m2 , D4 = k2

2 − m2 , D6 = (k1−k2)
2 . (5)
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Figure 2: The elliptic box-triangle.

Within the loop-by-loop Baikov parametrization we may write this integral as a seven fold integral,
introducing the seventh propagator

z = D7 = (k1+p3)
2 (6)

On the maximal cut (i.e. the cut of D1-D6) this becomes univariate and the integral family may be
written as

Iebt = K
∫
C

uϕ (7)

with

u = s
d−6

2 z
d−5

2 (4m2 − z)(3−d)/2
(
z2 − 2(m2+t)z − (4m2−s)(m2−t)2/s

) d−5
2 (8)

and

K =
22−d(m2)

d−4
2

(
(m2 − t)2 + st

) 4−d
2

π
5
2 Γ

(
d−3

2
)
Γ
(
d−2

2
) (9)

The expression for ϕ will depend on the powers of the propagators of the given integral. We can
indeed write this integrand as

Kuϕ = σ
φ

Y
where Y =

√
z (4m2−z)

(
z2 − 2(m2+t)z − (4m2−s)(m2−t)2/s

)
(10)

and where σ is pure and φ is rational.
There are three master integrals on the cut, and we pick as an intermediate basis

I1 = Iebt1111110 I2 = Iebt1111210 I3 = Iebt111111−1 (11)

corresponding to

φ̂1 =
1
s

φ̂2 =
2ε
sz

φ̂3 =
z
s

(12)

Likewise we need a set of three independent integration cycles. Defining

R :=
√
(m2−t)2 + st

s m2 (13)
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Figure 3: The three independent contours for the elliptic box-triangle.

we can name the four roots of Y

ri = t+m2(1−2R) , rii = 0 , riii = t+m2(1+2R) , riv = 4m2 . (14)

The we may pick as our three independent contours

γ1 = Cii-iii , γ2 = iCi-ii , γ3 = C∞ . (15)

which are depicted on fig. 3. This choice is identical to the case of the two-mass elliptic sunrise
integral discussed in ref. [1].

We may then compute the integrals of the intermediate basis over the three cycles. We get∫
γ1

φ1
Y
=

1
m2
√

Rs
K(k2)

∫
γ2

φ1
Y
=

1
m2
√

Rs
K(k̄2)∫

γ1

φ2
Y
=

−2ε
(4m2−s)(m2−t)2

(
4
√

RE(k2) +
m2(1 − 2R) + t

m2
√

R
K(k2)

)
∫
γ2

φ2
Y
=

2ε
(4m2−s)(m2−t)2

(
4
√

RE(k̄2) −
m2(1 + 2R) + t

m2
√

R
K(k̄2)

)
∫
γ1

φ3
Y
=
(4m2−s)(m2−t)

2m2
√

Rs2

(
K(k2) −

(1+R)((3 − 2R)m2 + t)
(1−R)((1+2R)m2 + t)

Π(n2, k2)

)
∫
γ2

φ3
Y
=
(4m2−s)(m2−t)

2m2
√

Rs2

(
K(k̄2) +

(1−R)((3 + 2R)m2 − t)
(1+R)((1−2R)m2 + t)

Π(n̄2, k̄2)

)
∫
γ3

φ1
Y
= 0

∫
γ3

φ2
Y
= 0

∫
γ3

φ3
Y
=
−π

s
(16)

where the arguments of the elliptic integrals are

k2 :=
((3 + 2R)m2 − t)((1+2R)m2 + t)

16m4R
k̄2 :=

((3 − 2R)m2 − t)((2R−1)m2 − t)
16m4R

(17)

n2 :=
(m2−t)2

4m4(1−R)2
n̄2 :=

(m2−t)2

4m4(1+R)2
(18)

which obey the relations k̄2 = 1 − k2 and n̄2/k̄2 = 1 − n2/k2.
If we construct the integrands of our candidate integrals as

ϕi = fi jφ j (19)

we may now construct our period matrix. If we name the above entries as gk j :=
∫
γj

φk

Y the entries
of the period matrix are given as

Pi j = fikgk j (20)
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Imposing that P = (2πi)I corresponds to fixing the fi j coefficients as fi j = 2πi(g−1)i j and with this
we have our candidate integrals. The expressions for the fi j will not be written here.

Those candidate integrals do indeed have epsilon factorized differential equations

∂

∂x
J = εA(x)J (21)

We will not write all the entries of the A-matrices here, one example is

A(m
2)

13 =
2

m2(m2−t)
√

R(4m4−4m2t−9m2s+st)
(22)

×

( (
t3−(m2−s)t2+3m2(m2+s)t−3m6)(K(k2) − 2E(k2)) +

(
m2t(5s+2t)−st2−2m6)√RK(k2)

)
and the other entries will have a similar form containing linear or quadratic combinations of the
complete elliptic integrals.

4. Discussion

The differential equation matrix, of which one example entry is given by eq. (22) looks in many
cases rather cumbersome. In the cases in the literature in which other examples of elliptic Feynman
integrals have been put to epsilon-factorized form [4–6] the results have properties that allow them
to be integrated up in a systematic fashion. The outcomes of my algorithm (as discussed here and
in ref. [1]) do not straightforwardly have such properties (even though there are hints, such as the
fact that the matrix entries never have poles of degree higher than one), so to find a modification of
my approach that produces such a form directly is an interesting research direction for the future.
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