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DIS coefficient functions at four loops in QCD and beyond S. Moch

1. Introduction

The deep-inelastic scattering (DIS) of leptons off a nucleon target is one of the basic scattering
reactions in Quantum Chromodynamics (QCD), which has been studied in many collider experi-
ments during the past 50 years. In recent times high precision inclusive DIS data has been measured
at HERA [1] and in the future the forthcoming Electron-Ion-Collider (EIC) [2, 3] is expected to
contribute as well. Unpolarized inclusive lepton-nucleon DIS proceeds through the reaction

l(k) + nucl(p) → l ′(k ′) + X , (1)

where the scattered leptons (or neutrinos) are denoted by l and l ′ and the nucleon state by ‘nucl’,
with the respective momenta k, k ′ and p, and X is the inclusive hadronic final state. The charge of
the exchanged gauge bosonV(q)with momentum q = k− k ′, is used to classify neutral- (V = γ∗, Z)
or charged-current (V = W±) DIS. The theoretical predictions for the reaction (1) are based on the
well known structure functions Fi, with i = 1, 2, 3 and FL = F2 − 2xF1, which are functions of the
Bjorken x variable x = Q2/(2p · q), where 0 < x ≤ 1, and the scale Q2 = −q2 > 0 of the exchanged
virtual boson.

Perturbative QCD allows for the computation of the scale dependence of the structure functions
as a series in the strong coupling αs, together with the coefficient functions of the hard scattering
process. The current state-of-the art for massless perturbative QCD is the next-to-next-to-next-to-
leading order approximation (abbreviated as (next-to)3-leading order or N3LO) for the structure
functions Fi, with i = 1, 2, 3. This encompasses the complete three-loop coefficient functions for
neutral- [4] and charged-current [5–7] DIS and partial results for the four-loop splitting functions
(Mellin moments [8–13], the large-nf contributions [14, 15], and the planar limit of the nonsinglet
case [11]) governing the Q2 dependence, so that the N3LO predictions are robust within the
kinematic range of past (HERA) and future (EIC) DIS experiments.

For theory predictions beyond this order, i.e., at the (next-to)4-leading order (N4LO), it is
necessary to consider the coefficient functions at four loops in perturbative QCD, which is ongoing
work and will be reported in these proceedings.

2. Computation

The focus in these proceedings is on the structure functions Fγ
∗

2 and Fγ
∗

L , which describe
the one-photon exchange in neutral-current DIS. The standard QCD factorization in leading twist
approximation, i.e., disregarding terms suppressed by powers of 1/Q2, allows to express them as
convolutions of the coefficient functions with the parton distributions (PDFs),

Fγ
∗

a (x,Q
2) =

[
Ca(Q2) ⊗ q+,ns(Q

2)
]
(x) , a = 2, L , (2)

where q+,ns is the nonsinglet quark PDF in the nucleon, the dependence on the factorization scale
µ2 is suppressed, and ⊗ denotes the standard convolution. The coefficient functions in Eq. (2) have
an expansion in powers of the strong coupling as = αs/(4π),

Ca,ns = δa2 +

∞∑
l=1

a l
s c (l)a,ns , a = 2, L , (3)
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where we have suppressed the dependence on x, on the number of effectively massless flavors nf
and on the ratio of scales Q2/µ2. Their Mellin moments are defined as

Ca,ns(N) =
∫ 1

0
dx x N−1 Ca,ns(x) , a = 2, L , (4)

and the even ones are accessible within the framework of the operator product expansion (OPE)
by computing suitable projections of the imaginary part of the forward Compton amplitude for the
scattering process of a virtual photon off a quark. The computational set-up, building on the OPE,
is well established [16], and has been used and described in detail in previous publications, see e.g.,
Refs. [4–7, 10, 17, 18].

All contributing Feynman diagrams for the process

γ∗(q) + q(p) → X , (5)

up to four loops are generated with Qgraf [19] and their color coefficients are obtained for a
general SU(nc) gauge group using the algorithms of [20], which determine the group invariants
for (semi-)simple Lie groups. At four loops, the color factors are given by powers of the quadratic
Casimirs C4−k

F Ck
A
for k = 0, . . . , 3 as well as by combinations of the cubic ones CFd abc

F d abc
F and

CAd abc
F d abc

F and the quartic ones d abcd
F d abcd

A
and d abcd

F d abcd
F , the latter being obtained from

the symmetrized trace d abc
r (d abcd

r ) of three (four) SU(nc) generators in representation r of the
SU(nc). In addition, nf -dependent terms arise by replacing CF → nf for up to three powers of CF .
Besides their color factors diagrams are grouped according to their nonsinglet flavor topologies.
For neutral-current diagrams up to four loops the corresponding charge factors read [4, 21]

f l2 = 1 , f l11 = 3〈e〉 =
3
n
f

n
f∑

i=1
eqi , (6)

where 〈e〉 represents the average of the quark charges eqi . Thus, for nf = {1, . . . , 6} the coefficient
f l11 takes the numerical values f l11 = {−1, 1/2, 0, 1/2, 1/5, 1/2} and diagrams of the f l11 flavor
topology arise only with cubic color factors d abc

F d abc
F . An illustration of the nonsinglet flavor

topologies at four loops is given in Fig. 1.
The matrix elements for the process (5) contain divergencies at higher orders, which are

regularized in D = 4 − 2ε dimensions. Choosing a fixed Mellin moment N as defined in Eq. (4)
then reduces the expressions for the Feynman diagrams to two-point functions up to four-loop
order, i.e., massless propagator-type diagrams, which can be computed with the help of standard
integration-by-parts algorithms [22, 23], whose solutions are encoded in the program Forcer [24]
for the computer algebra system Form [25–27] and its multi-threaded version TForm [28], which
is used for all symbolic manipulations.

This computation provides an analytic result for the bare forward Compton amplitude at a
chosen fixed value of N which is then subject to the standard ultraviolet renormalization of the
strong coupling αs and the subsequent removal of the remaining collinear singularities in powers
of 1/ε in the minimal subtraction scheme [29]. The single poles in 1/ε provide the anomalous
dimensions of the quark nonsinglet operator matrix elements [11].

High values of N , however, give rise to high powers of both, propagators in the denominator
and scalar products in the numerator in the propagator-type loop diagrams, to be computed with
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ν
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Figure 1: Typical Feynman diagrams for the different nonsinglet flavor topologies, f l2 (left) and f l11 (right).
The latter admits a dabc

F dabc
F color factor starting from three loop order through the coupling of three gluons.

Forcer. This leads to large-size intermediate expressions, sometimes of the order of several
TByte and to long run times. For example, the four-loop result for the Mellin moment N = 10 of
the coefficient function CL,ns in Eq. (3) required the evaluation O(3200) Feynman diagrams with
intermediate expressions of sizes up to O(20) TByte and a total of O(800000) hrs CPU time. The
multi-threaded version TForm delivers an average speed-up factor of O(10).

3. Coefficient functions at four loops

We can now provide the exact even Mellin moments for N = 2, 4, 6, 8, 10 of the coefficient
functions C2,ns and CL,ns up to fourth order in αs for QCD, i.e., taking the numerical values of the
SU(nc) color coefficients for nc = 3.

The complete perturbative expansion for C2,ns(N) for nf = 4 reads

C2,ns(2) = 1 + 0.0354 αs − 0.0231 α2
s − 0.0613 α3

s − 0.4746 α4
s

+ f l11

(
−0.0486 α3

s − 0.1424 α4
s

)
,

C2,ns(4) = 1 + 0.4828 αs + 0.4711 α2
s + 0.4727 α3

s − 0.2458 α4
s

+ f l11

(
−0.0367 α3

s − 0.0893 α4
s

)
,

C2,ns(6) = 1 + 0.8894 αs + 1.2054 α2
s + 1.7572 α3

s + 1.7748 α4
s

+ f l11

(
−0.0325 α3

s − 0.0684 α4
s

)
,

C2,ns(8) = 1 + 1.2358 αs + 2.0208 α2
s + 3.5294 α3

s + 5.3921 α4
s

+ f l11

(
−0.0304 α3

s − 0.0591 α4
s

)
,

C2,ns(10) = 1 + 1.5359 αs + 2.8608 α2
s + 5.6244 α3

s + 10.324 α4
s

+ f l11

(
−0.0291 α3

s − 0.0547 α4
s

)
, (7)
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and for CL,ns(N) for nf = 4

CL,ns(2) = 0.14147 αs

(
1 + 1.7270 αs + 3.7336 α2

s + 9.5619 α3
s

+ f l11

(
−0.1102 α2

s − 0.7865 α3
s

))
,

CL,ns(4) = 0.08488 αs

(
1 + 2.5619 αs + 6.9208 α2

s + 20.251 α3
s

+ f l11

(
−0.1201 α2

s − 0.9983 α3
s

))
,

CL,ns(6) = 0.06063 αs

(
1 + 3.1557 αs + 9.6370 α2

s + 30.573 α3
s

+ f l11

(
−0.1232 α2

s − 1.1174 α3
s

))
,

CL,ns(8) = 0.04716 αs

(
1 + 3.6191 αs + 12.040 α2

s + 40.535 α3
s

+ f l11

(
−0.1245 α2

s − 1.1997 α3
s

))
,

CL,ns(10) = 0.03858 αs

(
1 + 4.0020 αs + 14.215 α2

s + 50.164 α3
s

+ f l11

(
−0.1253 α2

s − 1.2629 α3
s

))
, (8)

where the numerical values forC2,ns andCL,ns (flavor class f l2 only) at N = 2, 4, 6 have already been
quoted in [10]. Further results forC2,ns andCL,ns at N = 12 and N = 14 have also been obtained, but
are limited to the large-nc approximation. All Mellin moments agree with the published all-order
large-nf limits of the nonsinglet structure functions F2 [30] and FL [31].

In addition to those moments more information about the four-loop coefficient functions is
available in the kinematic limits of large N (x → 1) and small N ' 0 (x → 0). Near threshold
the coefficient function c (4)2,ns is dominated by singular plus-distributions [lnk(1 − x)/(1 − x)]+ with
7 ≥ k ≥ 0 for x → 1 (αn

s lnk+1(N) in Mellin-N space) and the coefficients of all terms with k ≥ 1
are known, see, e.g. [32]. For nc = 3 in QCD c (4)2,ns reads

c(4)2,ns(x) = 16.85596708
[
ln 7(1 − x)

1 − x

]
+

+ . . .

+
{
(3.88405 ± 0.1) · 104 + (−3.49648951 ± 0.00000004) · 104 nf

+2062.715183 nf
2 − 12.08488248 nf

3 + 47.55183089 nf f l11
} [

1
1 − x

]
+

+δ(1 − x)c4,δ,DIS

−16.85596708 ln7(1 − x) +
{
504.6255144 − 14.74897119 nf

}
ln6(1 − x)

+
{
−5135.705824 + 416.4828532 nf − 4.213991769 nf

2} ln5(1 − x)

+
{
20935.61036 − 4034.293546 nf + 108.5761316 nf

2 − 0.3950617283 nf
3} ln4(1 − x)

+O(ln3(1 − x)) , (9)

where all exact values have been rounded to ten digits and the flavor factor f l11 is given in Eq. (6).
The new result for the term proportional to [1/(1 − x)]+ is based on the Mellin moments up to
N ≤ 15 for C2,ns and C3,ns. The latter denotes the coefficient function of the charged-current
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structure function FW++W−

3 , with its odd Mellin moments being accessible in the OPE. The limits
x → 1 for C2,ns and C3,ns coincide, thus increasing the available information for the estimates in
Eq. (6). Also, unpublished results for much higher Mellin moments (up to N ' 40) for the nf -
dependent contributions have been used. The coefficient of [1/(1 − x)]+ in Eq. (9) thus supersedes
the previous estimate [32], where also numerical estimates for the term c4,δ,DIS proportional to
δ(1− x) have been presented. The logarithmically enhanced powers lnk(1− x) for 7 ≥ k ≥ 4 of the
first subleading corrections at power (1 − x)0 (αn

s lnk(N)/N in Mellin-N space) for c (4)2,ns in Eq. (9)
have been derived in [33], with unknown terms starting at O(ln3(1− x)), as indicated (see also [34]
for recent work). For c (4)L,ns they are actually leading and the expansion around the limit x → 1 for
nc = 3 in QCD reads

c(4)L,ns(x) = 16.85596708 ln6(1 − x) +
{
−306.0638892 + 21.06995884 nf

}
ln5(1 − x)

+
{
2421.032535 − 356.9371659 nf + 9.481481481 nf

2} ln4(1 − x)

+O(ln3(1 − x)) . (10)

The small-x behavior of the nonsinglet coefficient functions features double logarithms in the limit
x → 0, which appear as αn

s lnk(x), where k = 2n − 1, . . . , 1, at all orders (αn
s /N

k+1 in Mellin-N
space for N → 0), which have been resummed to the third logarithmic (N2LL) order [35, 36]. The
fixed-order expansions of the latter resummations gives for c(4)2,ns and c(4)L,ns the following results [36],

c(4)2,ns(x) = −
13
168

C4
F ln7(x) +

{
263
180

C4
F −

911
1080

C3
F β0

}
ln6(x) −

{ (
14
5
−

734
15

ζ2

)
C4
F −

56
15

C3
F β0

+

(
109
18
+

208
5
ζ2

)
C3
FCA − 13ζ2C2

FC2
A +

1951
720

C2
F β

2
0

}
ln5(x) + O

(
ln4(x)

)
,

c(4)L,ns(x) = −2C4
F ln5(x) +

{
59
3

C4
F −

124
9

C3
F β0

}
ln4(x) +

{ (
322
3
+

2008
3

ζ2

)
C4
F −

28
3

C3
F β0

−(80 + 640ζ2)C3
FCA + 200ζ2C2

FC2
A −

230
9

C2
F β

2
0

}
ln3(x) + O

(
ln2(x)

)
, (11)

which have been quoted for a general SU(nc) gauge theory. While the partial results are of limited
direct use for phenomenology, i.e., still lacking knowledge on the logarithms lnk(x) with 4 ≥ k ≥ 1
for c (4)2,ns and k = 1, 2 for c (4)L,ns, these expressions provide valuable information for checks of analytic
computations or for reconstructions of the exact result from a number of fixed Mellin moments.

In Fig. 2 we plot the results for the coefficient functionC2,ns for nf = 4 at three and four loops as
a function of the Mellin moment N . The exact result for c (3)2,ns in Fig. 2 (left) is known from [4] and
shown to lie in between the curves determined by the threshold logarithms α3

s lnk(N) and the first
power suppressed terms α3

s lnk(N)/N , with 6 ≥ k ≥ 1 in both cases. The new four-loop moments
for c (4)2,ns in Fig. 2 (right) are also shown in comparison to the threshold logarithms, i.e., the N-space
equivalent of Eq. (9) and including the additional leading 1/N enhanced terms. Again, the two
approximations are expected to bracket the, yet unknown, full result.

In Fig. 3 the same information at three and four loops is shown for the coefficient function CL,ns

for nf = 4. Here, the power suppressed terms proportional to 1/N are leading as N →∞. From the

6
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Figure 2: The exact N-space results for the third-order coefficient function c (3)2,ns at nf = 4 for neutral-current
(one-photon exchange) DIS from [4] (left) and the moments in Eq. (7) of the fourth-order term c (4)2,ns calculated
so far (right). In both cases also the contributions provided by large-N resummations are shown.

three-loop result in Fig. 3 (left) it is obvious, that the complete tower of logarithms α3
s lnk(N)/N

with 4 ≥ k ≥ 1 is required approximate the exact result. Therefore, it is evident, that at four
loops the known first three logarithms α4

s lnk(N)/N with 6 ≥ k ≥ 4 for c (4)L,ns (given in Eq. (10) in
x-space) do not approximate the exact Mellin moments well and the further subleading logarithms
are needed as well.

4. Summary and Outlook

We have discussed the computation of the even Mellin moments N = 2, . . . , 14 of the four-loop
coefficient functions C2,ns and CL,ns in neutral-current (photon-exchange) DIS together with known
results on the endpoint behavior for large and small x from all-order considerations of soft and
collinear dynamics or the high energy limit. The results are available for a general SU(nc) gauge
group and numerical values for QCD (nc = 3) have been presented above. Part of the ongoing
studies are also the computation the odd moments N = 1, . . . , 15 for those of the structure function
F3 in charged-current (W+ +W−-boson exchange) DIS, with the results for the highest moments
N = 11 to 15 being restricted to the large-nc limit. This agrees with and extends previous results
on the first Mellin moment of F3, i.e., the α4

s contribution to the Gross-Llewellyn-Smith (GLS) sum
rule [37, 38].
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Figure 3: Same as Fig. 2 for the exact results for c (3)L,ns from [4] (left) and the moments in Eq. (8) of c (4)L,ns
(right).

The new results for the four-loop coefficient functions can be combinedwith the low-N moments
of the five-loop nonsinglet anomalous dimensions [39] to allow for inclusive DIS predictions at
N4LO in massless QCD. This situation is somewhat reminiscent to one more than 20 years ago,
when the then available three-loop moments of the DIS structure functions [21, 40, 41] were used to
derive reliable approximations [42, 43] in the kinematic range relevant for DIS experiments, before
the computation of the exact three-loop splitting and coefficient functions [4, 17, 18].

The combination of the new four-loop moments for F2, FL and F3 together with information
on the limits x → 0 and x → 1 will again provide robust approximations for very precise QCD
predictions. They will be presented in a future publication [44].
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