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1. Introduction

The increasing precision of the experiments at the Large Hadron Collider (LHC) provided a

strong motivation for pushing the theoretical predictions to very high accuracy. Recently, there

has been impressive progress in computing perturbative corrections through the next-to-next-to-

next-to-leading order (N3LO) in QCD, e.g. [1–7]. The lack of knowledge of the 4-loop splitting

functions, which govern the scale evolution of parton densities, is one of the dominant sources of

theoretical uncertainties on N3LO predictions. Out of a wide range of methods that have been

applied to compute splitting functions up to three loops [8–26], only few approaches are suitable

to carry on through four loops. The framework based on the Operator Product Expansion (OPE),

originally developed in refs. [27, 28], is one of the most promising. This approach was applied to

determine a highly accurate numerical approximation of the flavour non-singlet splitting functions

at four loops and to reconstruct their exact analytic form1 in the limit of large number of colours

[31].

The key point of the method is that the splitting functions are extracted in Mellin space, from

the anomalous dimensions of leading-twist operators, defined as

`2 3

3`2
O

(# )
8;`1...`#

= −W
(# )
8 9

O
(# )
9;`1...`#

. (1)

Here, the anomalous dimensions W
(# )
8 9

give the # th Mellin moment of the splitting functions when

8, 9 = q(quark) or g(gluon). These are associated to the renormalisation of the gauge invariant

operators

O
(# )
6;`1...`#

=
1

2
S)

{
�01
d`1

�0102
`2

. . . �
0#−20#−1
`#−1

�
0# ;d

`#

}
, (2)

O
(# )

@ S;`1...`#
= S)

{
k̄81 W`1

�8182
`2

. . . �
8#−18#
`#

k8#

}
, (3)

O
(# ) ,d

@ NS;`1...`#
= S)

{
k̄81 (_

d) W`1
�8182

`2
. . . �

8#−18#
`#

k8#

}
, (4)

where �0
`a is the gluon field-strength, k8 is the fermion field, �01

` is the covariant derivative (with

colour indices either in the fundamental representation, when it acts on the quark field, or in the

adjoint representation when it acts on the field strength) and _d is the generator of the SU(= 5 ) flavour

group. The symbol S) denotes symmetrisation of the Lorentz indices `1 . . . `# and removal of

trace terms. The determination of the anomalous dimensions is relatively straight forward in the

case of the flavor non-singlet operator, defined in eq. (4), which renormalise with a multiplicative

constant

O
(# )

@ NS;`1...`#
(`2) = /

(# )
ns (`2) O

(# ) ,bare

@ NS;`1...`#
, W

(# )
ns = −`2 3

3`2
log /

(# )
ns . (5)

As a consequence, the non-singlet anomalous dimensions are extracted from off-shell Operator

Matrix Elements (OMEs) with two external fields, which are computed through four loops with

state-of-the-art techniques, such as FORCER [32].

1The analytic form of the leading and of the sub-leading contributions to the splitting functions for a large number of

flavours was done in [29, 30].
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The renormalisation of flavour singlet operators, defined in eqs. (2) and (3), is much more

complicated, because they mix with non-physical operators [27, 28], called aliens. These must be

taken into account in the right hand-side of eq. (1), but a priori it is not known how to construct all

required alien operators. An explicit basis, valid at the 2-loop level, was worked out by Dixon and

Taylor [33]. This result is as the foundation of the work by Hamberg and van Neerven [11], who

managed to correctly determine the gluonic anomalous dimensions at two loops, resolving a series

of discrepancies in the previous literature.

Nevertheless the structure of the basis proposed by Dixon and Taylor remained somewhat

mysterious and therefore difficult to extend to higher orders. The work of Joglekar and Lee [34–36]

characterised2 the alien operators that can mix with the gauge invariant ones to all perturbative

orders. The classification introduces two types of terms: operators that are proportional to the

equation of motion (EOM operators) and operators that vanish under BRST transformations

(BRST-exact operators). However, Joglekar and Lee did not provide an explicit basis that can be

used to compute the anomalous dimensions via eq. (1).

In conclusion, it is not immediately clear how to extend the OPE method beyond two loops.

Recent results in this direction were discussed in detail during this conference [40, 41]. Here we

present the work [42], which provides the general construction of aliens in pure Yang Mills theory.

This covers to the most complicated pattern of operator mixing and generalises to the construction

of [33], extending it to all order. Explicit bases of alien operators are given through four loops and

applied to compute the anomalous dimensions of gluonic operators at # = 2, 4, 6.

In order to proceed, we introduce a scalarised version of the gluonic operator in eq. (2). This

is obtained by contracting O
(# )
6;`1...`#

with the symmetric traceless projector constructed in terms of

a lightlike vector Δ` (i.e. Δ`Δ
` = 0), which gives

O
(# )

1
= O

(# )
6;`1...`#

Δ
`1 . . .Δ`# =

1

2
Tr

[
�d �

#−1 �d
]
, (6)

where we use the notation [11]

�0
a = �0

a`Δ
`, � = �` Δ

`, m = m` Δ
`, �0

= �0
` Δ

`, (7)

The renormalisation of O
(# )

1
requires the introduction of an a priori unknown number of alien

operators O 9>1, which mix with O1 via the equation

O
(# )

1
(`2) = /

(# )

1 8
(`2) O

(# ) ,bare

8
. (8)

In this talk we describe

• the construction of the basis of aliens O
(# )
9

, with 9 > 1

• the calculation of the physical entry /
(# )

1 1
and of the gluonic anomalous dimension W

(# )
6 6 .

2. Theoretical framework

We begin by introducing the Yang-Mills Lagrangian L = L0 + LGF+G, where

L0 = −
1

4
�0
`a �

0;`a (9)

2These results were conjectured earlier in [37, 38]. An alternative proof of the Joglekar-Lee theorem is given in [39].
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is invariant under gauge transformations

Xl�
0
` = �01

` l1
= m`l

0 + 6 5 012�1
`l

2 . (10)

LGF+G comprises gauge fixing and ghost terms, which read

LGF+G = B

[
2̄0

(
m`�0

` −
b!

2
10

)]
= B̄

[
20

(
b!

2
10 − m`�0

`

)]
, (11)

where b! is the gauge-fixing parameter, 2 and 2̄ are the ghost and the antighost fields, respectively,

1 is the Nakanishi-Lautrup field [43, 44] and 1̄0 = −10 + 5 012 2̄122 [45]. Finally, B and B̄ denote

the BRST [46, 47] and the anti-BRST [48–50] operators, defined as

B
(
�0
`

)
= �01

` 21, B̄
(
�0
`

)
= �01

` 2̄1 (12)

B (20) = −
6

2
5 012 21 22, B̄ (2̄0) = −

6

2
5 012 2̄1 2̄2 (13)

B (2̄0) = −10, B̄ (20) = −1̄0 (14)

B (10) = 0, B̄
(
1̄0

)
= 0. (15)

The BRST and the anti-BRST operators anticommute and they are both nilpotent, obeying B2 =

B̄2 = {B, B̄} = 0. This guarantees that LGF+G, and therefore the Yang-Mills Lagrangian as a whole3,

is invariant under BRST and anti-BRST transformations. The BRST invariance of L has deep

consequence for the renormalisability of the theory [46, 51].

The main point of ref. [42] is that we can extend the Yang Mills Lagrangian by including

the gauge invariant operator defined in eq. (6) and the alien operators that are required to maintain

invariance under a generalised version of the BRST transformations. The remaining part of this

section shows how to achieve this.

2.1 Equation of motion operators

In order to generate the alien operators of EOM type, we take the variation of the action

(0 =

∫
L0 3

3G, (16)

under field redefinitions �0
` → �0

` + G0
` . These give

O
(# )

EOM
=
X(0

X�0
`

G0
` (�

01
`1
, m`1

�01
`2
, . . . ) = (�a�a)

0 G0 (�01 , m�01 . . . ), (17)

where we contract the projector Δ`1
. . .Δ`#

to select the symmetric traceless component, as done

for the gauge invariant operator in eq. (6), and where we use G0
` = Δ` G

0 (�08 , m�08 , . . . ). The

latter is a polynomial in the field �0 and its derivatives

G0 (�08 , m�08 , . . . ) =

∞∑

:=1

6:−1
∑

81+···+8:
=#−:−1

�
0;01...0:

81...8:

(
m81�01

)
...

(
m8: �0:

)
, (18)

3Both the BRST and the anti-BRST transformation of the gluon field are special cases of the gauge transformation in

eq. (10), where we identify l0 with 20 or with 2̄0 , respectively. Therefore, L0 is automatically invariant under BRST

and anti-BRST transformations.
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where �
0;01...0:

81...8:
are coefficients constrained only by colour conservation [42]. In turn, O

(# )

EOM
reads

O
(# )

EOM
=

∞∑

:=1

O
(# ) ,:

EOM
(19)

O
(# ) ,:

EOM
= 6:−1 (�.�)0

∑

81+···+8:
=#−:−1

�
0;01...0:

81...8:

(
m81�01

)
...

(
m8: �0:

)
. (20)

The presence of non-trivial mixing under renormalisation of O
(# )

1
into O

(# )

EOM
has a transparent

diagrammatic interpretation. The insertion of O
(# )

1
in a Feynman diagram generates ultraviolet

divergences that are proportional to vertices of O
(# )

EOM
. Up to four-loop order, the OMEs of O

(# )

1

feature divergent subgraphs with up to 5 external gluons. Therefore, in the of eq. (19), we need to

take into account only the terms O
(# ) ,:

EOM
with : ≤ 4, which feature vertices among 5 gluons or less

O
(# ) ,1

EOM
= [ (�.�)0 m#−2�0 (21)

O
(# ) ,2

EOM
= 6(�.�)0

∑

8+ 9=
#−3

�012
8 9 (m8�1) (m 9�2) (22)

O
(# ) ,3

EOM
= 62(�.�)0

∑

8+ 9+:
=#−4

�0123
8 9: (m8�1) (m 9�2) (m:�3) (23)

O
(# ) ,4

EOM
= 63(�.�)0

∑

8+ 9+:+;
=#−5

�01234
8 9:; (m8�1) (m 9�2) (m:�3) (m;�4). (24)

The coefficients �
0;01...0:

81...8:
of eqs. (22)-(24) are further expanded into free coupling constants ^81...8:

and colour factors. The latter correspond to the colour structures of the : + 1-point gluonic

subdiagrams that appear in the OMEs [42]. We get

�012
8 9 = 5 012^8 9 (25)

�0123
8 9: = ( 5 5 )0123^

(1)

8 9:
+ 301234 ^

(2)

8 9:
+ 30123

4̂ 5 5
^
(3)

8 9:
(26)

�01234
8 9:; = ( 5 5 5 )01234^

(1)

8 9:;
+ 3012344 5 ^

(2)

8 9:;
, (27)

where we use the notation

( 5 5 )0123 = 5 014 5 234, ( 5 5 5 )01234 = 5 01< 5 <2= 5 =34,

3012344 5 = 3012<4 5 <34, 301234 5 5 = 301<=
4 5 <24 5 43= , (28)

30123
4̂ 5 5

= 301234 5 5 −
1

3
�� 3

0123
4 ,

and the symmetrised trace is defined in terms of the group generators in the adjoint representation,

()0
�
)12 = 8 5 102, by

301234 =
1

4!
[Tr()0

�)
1
�)

2
�)

3
�) + symmetric permutations] . (29)

5
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2.2 Generalisation of Gauge and BRST Invariance

Since O
(# )

EOM
is constructed in terms of the gauge field and its derivatives, it manifestly breaks

gauge symmetry. However, it maintains the invariance under a generalised type of gauge transfor-

mations. To be concrete, we extend the Yang Mills Lagrangian, by including the gauge invariant

operator O1 and the EOM alien operators

LEGI = L0 + C1 O
(# )

1
+ O

(# )

EOM
, (EGI =

∫
LEGI3

3G, (30)

where C1 is the coupling constant associated to O
(# )

1
. We consider the variation of (EGI under

�0
` → �0

` + Xl�
0
` + XΔl�

0
` , (31)

where XΔl�
0
` is multi-linear in Δ. By working to leading order4in Δ, we determine XΔl�

0
` such that

it cancels the gauge variation of O
(# )

EOM
and X(EGI = 0. This leads to the relation

XΔl�
0
` = −XlG

0
` + 6 5 012 G1

` l
2, (32)

where XlG
0
` is the gauge variation of G0

` . The concrete expression of XΔl�
0
` is worked out easily

by using the ansatz in eq. (18). However, we notice that eq. (32) holds beyond the leading-twist

case, upon using a more general ansatz for G0
` without symmetric traceless projection.

Eq. (32) immediately leads to a generalised BRST transformation for the gauge field

�0
` → B′(�0

`) = B(�
0
`) + BΔ(�

0
`), (33)

where BΔ(�
0
`) is found from XΔl�

0
`, in eq. (32), by replacing l0 → 20

BΔ(�
0
`) = −B

(
G0
`

)
+ 6 5 012 G1

` 2
2 . (34)

Here B
(
G0
`

)
indicates the usual BRST operator, defined in eq. (12), acting on G0

` . The crucial

feature of eq. (34) is that, for any choice of G0
` , the generalised BRST transformation is nilpotent

B′2(�0
`) = {B, BΔ} �

0
` = 0. (35)

This provides the missing piece to construct a Lagrangian that is invariant under generalised BRST

transformations and includes O
(# )

1
and the EOM alien operators O

(# )

EOM

L̃ = LEGI + B
′

[
2̄0

(
m`�0

` −
b!

2
10

)]
, (36)

where we assume BΔ(1
0) = BΔ(2̄) = 0. By construction, LEGI is invariant under the transformation

in eq. (33), because the latter has the same form of eq. (31). The second term in eq. (36), which

is constructed to recover the gauge fixing and ghost term of eq. (11), is BRST-exact (now in the

generalised sense), thus ensuring invariance of L̃.

4This is sufficient to renormalise a single insertion of O
(# )
1

in any correlator.

6
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2.3 BRST-exact operators and summary

In the last part of this section we read off the BRST-exact alien operators from eq. (36)

O
(# )

�
= BΔ

(
2̄0 m`�0

`

)
= 2̄0m`

(
B
(
G0
`

)
− 6 5 012 G1

` 2
2
)
, (37)

where we used eq. (34) and BΔ(2̄
0) = 0. For every value of # , we get explicit expression by

replacing eq. (18) in the equation above and operating with the operator B. For instance, for # = 2

we have G0 = [�0, giving

$
(2)

EOM
= [ (�.�)0 �0, $

(2)

�
= [ 2̄0m220 . (38)

Increasing # , more and more terms in G0
` , eq. (18), contribute. For instance, for # = 4 we get

G0
= [ m2�0 + 2 6^01 5

00102 �01m�02 + 62 ^
(2)

000
30010203�01�02�03 . (39)

By plugging this expression in eq. (37) we get

O
(4)

�
= − [ m2̄0

[
m320 + 6 5 012

(
2 m�1m22 + �1m222

)]
(40)

− 2 6^01m2̄
0
[
5 012

(
�1m222 − m�1m22

)
+ 6 5 01I 5 23I �1�2m23

]

− 362 ^
(2)

000
301234 m2̄0�1�2m23

However, not all the terms above are independent. A set of non-trivial relations on the coefficient

^81...8: derives by imposing the invariance of !̃ under generalised anti-BRST. We already pointed

out that the Yang-Mills Lagrangian can be written as the variation of an ancestor operator under

anti-BRST transformations. The latter are defined to be identical to BRST transformation, where

the ghost field is exchanged with an antighost. In the same way, we construct generalised anti-BRST

transformations from eq. (34)

B̄′�0
` = B̄�0

` + B̄Δ�
0
`, B̄Δ�

0
` = −B̄

(
G0
`

)
+ 6 5 012 G1

` 2̄
2, (41)

and B̄Δ2
0 = B̄Δ1

0 = 0. By using the generalised anti-BRST in the gauge fixing and ghost Lagrangian,

eq. (11), we derive the following expression for L̃

L̃ = L0 + C1 O
(# )

1
+ O

(# )

EOM
+ B̄′

[
20

(
b!

2
10 − m`�0

`

)]
. (42)

The equivalence of the right hand-sides of eqs. (36) and (42) implies

− 2̄0 m`
(
BΔ�

0
`

)
= 20 m`

(
B̄Δ�

0
`

)
, (43)

which relates different couplings in G0 [42]. For instance, by defining BΔ and B̄Δ as in eqs. (34)

and (41), respectively, where G0 is given in eq. (39) for # = 4, we find that ^01 =
[

2
, thus reducing

eq. (40) to two independent terms.

To summarise, we construct the Lagrangian that includes all the alien operators associated to

O
(# )

1
by requiring its invariance under a generalised type of BRST (and anti-BRST) transformation,

which gives

L̃ = L0 −

(
m`�0

`

)2

2b!
− 2̄0m`�01

` 21 + C1 O
(# )

1
+
∑

8>1

C8 O
(# )
8

, (44)

7
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where the alien sector is ∑

8>1

C8 O
(# )
8

= O
(# )

EOM
+ O

(# )

�
. (45)

Both O
(# )

EOM
and O

(# )

�
are computed in terms of G0 in the form of eq. (18), as follows

• O
(# )

EOM
= (�`�`)

0 G0

• O
(# )

�
= −(m2̄0)

(
B (G0) − 6 5 012 G1 22

)

We reduce to a minimal set of operators by imposing the anti-BRST invariance, given in eq. (43).

This identifies the minimal set of coupling constants C8 , with 8 > 1, in eq. (44).

3. Calculations and results

We employ the bases of alien operators defined in the previous section to compute the physical

anomalous dimension W
(# )

1 1
with off-shell OMEs. Following [42], we work in the background field

method [37, 52–62] and we define the OMEs with two external background fields and an insertion

of the operator O8

(
Γ
(# )

O8 ;��

)0102

a1a2

(6, b; ?2) =

∫
33G13

3G2 4
8 ?· (G1−G2) 〈0|)

[
�01
a1
(G1)�

02
a2
(G2)O

(# )
8

(0)
]
|0〉1PI, (46)

where b = 1 − b! and �0
` is the background field. These quantities vanish at tree level unless the

inserted operator is the physical one, namely O
(# )

1
, and we have5

Γ
(# )

8;��
(6, b, ?2) =

8

=




Γ
(# ) ,0

8;��
+ XΓ

(# )

8;��
(6, b, ?2) 8 = 1

XΓ
(# )

8;��
(6, b, ?2) 8 ≠ 1 (48)

The anomalous dimensions W
(# )

1 1
, for each value of # , are computed in terms of the renormalisation

constants /
(# )

1 1
= 1 + /

(# )

1 1
via

W
(# )
g g = 0

m

m0
/
(# )

1 1

��� 1
n

, (49)

where 0 = 62/(16c2) is the strong coupling constant and n = (4 − 3)/2 is the dimensional

regularisation parameter. We extract /1 1 from the off-shell OMEs by solving

X/
(# )

1 1
= −

1

/� Γ
(# ) ,0

1;��

 n

[
/�

∑

8≥1

/
(# )

1 8
XΓ

(# )

8;��
(6�, b�)

]
, (50)

where the operator n extracts the poles in the Laurent expansion in n and where the renormalisation

constant /� of the background field is related to the renormalisation of the coupling by /� /0 = 1

[61, 62]. The constants /
(# )

1 8>1
, which generate mixing between O

(# )

1
and the alien operators,

5We can reduce to scalar quantities by applying projectors on the colour and spin indices, e.g.

Γ
(# )
8;��

(6�, b�, ?
2) =

X0102

#�

6a1a2

(3 − 1)

(
Γ
(# )
8;��

)0102

a1a2

(6�, b�, ?
2), (47)

8
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are computed in [42] by applying the '∗ operation to appropriate correlators6, which feature the

insertion of O
(# )

1
and a pair ghost-antighost and gluons as external lines.

Beginning with # = 2, in addition to the gauge invariant operator O
(2)

1
we find only one alien,

leading to the basis

O
(2)

1
=

1

2
�0
` �

0;`, O
(2)

2
= (�a�a)

0 �0 + 2̄0m220 .

After computing the mixing renormalisation constant up to 3-loop

X/
(2)

1 2
= −0

��

2n
+ 02�2

�

[
19

24n2
+

5

48

b

n
−

35

48n

]
+ 03�3

�

[
−

779

432n3
+

1

n2

(2807

864
−

35b

216
+

5b2

288

)

+
1

n

(
−

16759

7776
−

11Z3

72
+

377b

1728
+

5Z3 b

72
−

65b2

1728

)]
+$ (04), (51)

we find

X/
(2)

1 1
= 0, (52)

which agrees with the recent result of an explicit calculation in a different approach [64] and with

general the theorem proved in [65, 66].

The basis of operators at # = 4 involves two aliens, as discussed in the previous section. One

possible choice is

O
(4)

1
=

1

2
Tr
[
�a�

2�a
]
, (53)

O
(4)

2
= (�.�)0

[
m2�0 + 6 5 012�1m�2

]
− m2̄0 m320 − 6 5 012 m2̄0

[
2�1m222 + m�1 m22

]

− 62 5 014 5 234 m2̄0 �1�2 m23 , (54)

O
(4)

3
= 30123

[
(�.�)0�1�2�3 − 3m2̄0 �1�2 m23

]
. (55)

We notice that O
(4)

2
generates a vertex between 2 gluon or 2 ghost lines, and therefore it can enter

the 4-loop correlator Γ
(4)

1;��
as the counterterm of a two-point subdiagram with at most 3 loops. In

contrast, O
(4)

3
involves vertices with at least 4 external particles. These can enter as subdiagrams

with at most one loop. As a consequence the mixing renormalisation constants X/
(4)

1 2
and X/

(4)

1 3
are

computed up to three and one loop, respectively

X/
(4)

1 2
= −

0��

12n
− 02�2

�

[ 97

1440n2
−

b

320n
+

8641

86400n

]
+ 03�3

�

[ 9437

86400n3
−

1

n2

( 1520341

15552000
−

853b

86400

)

−
1

n

(166178237

466560000
+

Z3

2400
−

37199b

648000
−

37Z3 b

9600

)]
(56)

X/
(4)

1 3
=
0 ��

24n
. (57)

6See [63] for a discussion of the method

9
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Using these results in eq. (50) we get

X/
(4)

1 1
= 0

21��

5n
+02�2

�

(
28

25n2
+

7121

1000n

)
−03�3

�

(
1316

1125n3
+

151441

45000n2
−

103309639

4050000n

)

+ 04

{
�4

�

[
11186

5625n4
+

1512989

450000n3
−

5437269017

162000000n2
+

1

n

(1502628149

13500000
+

1146397Z3

45000

−
126Z5

5

)]
+
3��

#�

(
21623

600n
+

3899 Z3

15n
−

1512 Z5

5n

)}
, (58)

which agrees with the state-of-the-art result [64].

In the paper [42], we also discuss the renormalisation of O
(6)

1
up to three loops, finding

agreement with the work [67], which relies on a different method. From the computational

point of view, getting the four-loop anomalous dimension of O
(6)

1
is challenging. The bottleneck

is the determination of the mixing renormalisation constant, which relies on '∗ in our current

implementation. The computational cost of this technique increases with insertion of operators of

high mass dimension. Ultimately, we might employ different methods for this part of the calculation,

e.g. the one discussed in [68].

4. Conclusion

While the OPE framework is a powerful tool to compute the four-loop splitting functions from

the anomalous dimensions of gauge invariant operators, in the flavour sector the mixing of the gauge

invariant operators and unphysical aliens poses a severe conceptual issue. Indeed, it was not known

how to construct the required alien operators beyond two loops. Here we discuss a general procedure

to construct all the aliens that mix with the gluonic operator, O
(# )

1
. This procedure leverages the

generalised BRST transformation of eq. (34) to construct the EOM and the BRST-exact operators,

given respectively in eqs. (17) and (37). The concrete expression of the transformation is given up

to 4 loops and can be read off eqs. (21)-(24). We verify the approach by renormalising the operators

O
(2)

1
and O

(4)

1
through 4 loops and O

(6)

1
through 3 loops.

In the future, in addition to technical work on the extraction of mixing renormalisation constants,

we plan to extend this method to fermionic contributions. This will allow us to complete the

theoretical framework to compute the whole flavour singlet sector of the splitting functions up to

four-loop order.
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